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Abstract 

In light of the increasing trend towards vehicle connectivity and automation, there will be areas and situations on 

the roads where high automation can be granted, and others where it is not allowed or not possible. These are 

termed ‘Transition Areas’. Without proper traffic management, such areas may lead to vehicles issuing take-over 

requests (TORs), which in turn can trigger transitions of control (ToCs), or even minimum-risk manoeuvres 

(MRMs). In this respect, the TransAID Horizon 2020 project develops and demonstrates traffic management 

procedures and protocols to enable smooth coexistence of automated, connected, and conventional vehicles, with 

the goal of avoiding ToCs and MRMs, or at least postponing/accommodating them. Our baseline simulations 

confirmed that, e.g., a coordinated distribution of takeover events can prevent drops in traffic efficiency, which 

in turn leads to a more performant, safer, and cleaner traffic system, when taking the capabilities of connected 

and autonomous vehicles into account. 
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1.1.1. Nomenclature 

ADS  Automated driving systems 

(C)AV  (Connected and/or) autonomous vehicle 

MCM  Minimum-risk manoeuvre 

NAD  No automated driving 

ODD   Operational design domain 

OEM  Original equipment manufacturer 

OREM  Operational road environment model 

SAE  Society of Automotive Engineers 

TA  Transition area 

ToC  Transition of control 

TOR  Take-over request 

TransAID Transition areas for infrastructure-assisted driving 

V2X  Vehicle-to-anything 

 

2. Introduction  

As the introduction of automated vehicles becomes feasible, even in urban areas, it will be necessary to 

investigate their impacts on traffic safety and efficiency. This is particularly true during the early stages of 

market introduction, where automated vehicles of all SAE levels, connected vehicles (able to communicate via 

V2X) and conventional vehicles will share the same roads with varying penetration rates. 

 

There will be areas and situations on the roads where high automation can be granted, and others where it is not 

allowed or not possible due to missing sensor inputs, highly complex situations, etc. Moving between those 

areas, there will be areas where many automated vehicles will change their level of automation. We refer to these 

areas as ‘Transition Areas’. 

 

Without proper traffic management, such areas may lead to vehicles issuing take-over requests (TORs) to their 

drivers, which in turn can trigger transitions of control (ToCs) towards these drivers, or even minimum-risk 

manoeuvres (MRMs) by the vehicles themselves. In this respect, the TransAID Horizon 2020 project 

(‘Transition Areas for Infrastructure-Assisted Driving’) develops and demonstrates traffic management 

procedures and protocols to enable smooth coexistence of automated, connected, and conventional vehicles, with 

the goal of avoiding ToCs and MRMs, or at least postponing/accommodating them. 

 

3. Outline of the traffic management framework 

3.1. Techniques for traffic management 

In first instance, TransAID compiled an outline of the state-of-the-art of traffic management, putting the focus 

first on general approaches, including coordinated network-wide traffic management, using KPIs, layered 

architectures spanning the range from top-down regulation over self-organisation to full bottom-up regulation, 

and even Traffic Management-as-a-Service. We also looked at the trend towards more cooperative systems 

which is well-suited for enhanced traffic management, making the systems smarter by targeting 

(cooperative/connected) vehicles individually. Moreover, we looked at the expected impacts that machine 

learning techniques and artificial intelligence in general would have on traffic management. Note however that 

as of yet there do not exist (readily available) implementations of these more advanced traffic management 

schemes. Finally, we also reviewed the existing procedures and protocols for traffic management, how to adhere 

to standards and policies (on the strategical, tactical, and operational/technical levels), and to integrate these with 

existing road-side systems, explained the link between goals, policies, and strategies, considered the EC 

perspective via its ITS Directive, C-ITS platform, and SUMPs. 
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In itself, all these solutions are very fine and usable. However, there are no (readily available) integrated traffic 

management experiments or setups, taking higher degrees of vehicle automation into account. Nor do they allow 

the interplay between all the various solutions to lead to a better system performance. This is where TransAID 

makes the difference by creating a traffic management framework. Fleet managers of connected and/or 

autonomous vehicles (CAVs), as well as road authorities, both operate backend centres to manage their fleets 

and traffic networks, respectively. A more encompassing solution is needed to manage all these transition areas, 

as well as the different stakeholders. 

3.2. TransAID in the role of an intermediary service provider 

Automated vehicles of different makes with different levels of automation will each be designed to operate in a 

particular domain. Such a domain is characterised by static and dynamic attributes which range from road type 

and layout to traffic conditions, weather and many attributes in between. In general, we call these domains 

‘operational design domains’ (ODD), which are defined by Czarnecki (2018) as the operating conditions under 

which a given driving automation system or feature thereof is specifically designed to function, including, but 

not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or 

absence of certain traffic or roadway characteristics. An ODD may put limitations on (i) the road environment, 

(ii) the behaviour of the automated driving systems (ADS)-equipped subject vehicle, and (iii) the state of the 

vehicle. Furthermore, an operational road environment model (OREM) is a representation of the relevant 

assumptions about the road environment in which an ADS will operate the ADS-equipped vehicle (e.g., a two-

lane rural road). An ODD of an ADS implies a set of operational environments in which the ADS can operate the 

ADS-equipped vehicle. These environments can be specified using a set of OREMs, which can be in- or out-of-

scope of the ODD. 

 

When the ODD of an AV ends, it will handover the control of the vehicle to the human driver or in case the 

driver does not respond, initiate an MRM. The location of such an event is referred to as the TA. However, due 

to the stochastic nature of traffic (take the occurrence and impacts of incidents for example) and the diversity of 

automated vehicle makes and their capabilities, it is impossible to perfectly predict where, when, and why the 

ODD ends and consequently TAs are located. Nonetheless, the existence of TAs affects both AV-fleet managers 

and road authorities due to reduced performance of the vehicle and the traffic network respectively. Here, 

TransAID develops infrastructure support measures for situations which normally would imply the end of the 

ODD. However, as part of these support measures, AVs receive additional information and/or guidance needed 

to enable them to proceed in automation mode. 

 

AV-fleet managers and road authorities both operate backend centres to manage their fleets and traffic networks, 

respectively. To effectively and systematically manage TAs on a large scale and for multiple AV fleets and 

multiple road authorities, we propose a trusted third party (and where possible mandated) intermediary service. It 

will then act as the single-point-of-contact for road authorities and traffic participants (or indirectly, via their 

OEMs). Based on status and disengagement information from AV fleet managers and traffic management plans 

from road authorities, this intermediary service acts as a delegated traffic manager who digitally implements the 

TransAID infrastructure support measures. With support of the right tools, an operator continuously monitors in 

real-time the traffic system and disengagement reports, based on triggers and scenarios, identifies TAs, and 

finally selects the appropriate measure. An advantage of this service is that measures taken by AV-fleet 

managers and road authorities can be coordinated and harmonised across multiple AV fleets and geographical 

areas (managed by different road authorities). Moreover, smaller and/or rural road authorities, which may not 

have backend centres or not a suitable operational overview of the road and traffic flow dynamics, can benefit 

from an intermediary service that can perform this task for them. The concept of the intermediary service 

approach adopted within TransAID’s traffic management scheme is depicted in Figure 1. 
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Figure 1: Schematic overview of TransAID’s intermediary service approach. 

4. TransAID’s services and use cases 

4.1. General overview 

Within TransAID we defined five different use cases where disruptions of traffic flow are expected to be most 

severe as a result of transition between automation levels. The initially selected use cases were: 

 

¶ Service 1 (Use case 1.1): Prevent ToC/MRM by providing vehicle path information 

 

 
 

¶ Service 2 (Use case 2.1): Prevent ToC/MRM by providing speed, headway and/or lane advice 

 

 
 

¶ Service 3 (Use case 3.1): Prevent ToC/MRM by traffic separation 
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¶ Service 4 (Use case 4.2): Manage MRM by guidance to safe spot (urban & motorway) 

 

 
 

¶ Service 5 (Use case 5.1): Distribute ToC/MRM by scheduling ToCs 

 

 
 

In addition, we elaborated all use cases with general descriptions, timelines, road networks, and requirements on 

the vehicle capabilities, vehicle numbers, and traffic compositions. For each of these use cases, we listed when 

(i.e. for which Level of Service and vehicle mix), where (what is the spatial extent of the transition area, and at 

which location should the system inform vehicles/drivers?), and how (what specific traffic management 

measures should be taken?) traffic management measures should be applied. 

4.2. Used traffic conditions and vehicle mixes 

The ‘right’ traffic management measures are dependent on traffic conditions and the vehicle mix. The following 

Tables 1, 2, and 3 give an overview of their values: 

¶ Definition of the levels of service (LOS) A through C (HCM, 2010) 

¶ Distribution of passenger vehicles versus LGV and HGV 

¶ Overview of the different vehicle types, aggregated into classes of actors 

¶ Artificial vehicle mixes for baseline simulations 

Table 1: Vehicles/hour/lane for Level of Service A, B and C in urban, rural, and motorway conditions. 

 LOS A LOS B LOS C 

Urban (50km/h) – 1500 veh/h/l 525 825 1155 

Rural (80 km/h) – 1900 veh/h/l 665 1045 1463 

Motorway (120 km/h) – 2100 veh/h/l 735 1155 1617 

Intensity / Capacity (IC) ratio 0.35 0.55 0.77 

 

Table 2: Classification of actors (vehicle types). 

Class Name Class Type Vehicle Capabilities 

Class 1 Manual Driving 
ï Legacy Vehicles 

ï (C)AVs/CVs (any level) with deactivated automation systems 

Class 2 
Partial 

Automation 

ï AVs/CVs capable of Level 1 and 2 automation 

ï Instant TOC (uncontrolled driving in case of distracted driving) 

ï No MRM capability 

Class 3 
Conditional 

Automation 

ï (C)AVs capable of Level 3 automation (level 3 systems activated) 

ï Basic ToC (normal duration) 

ï MRM capability (in the ego lane depending on speed and a predetermined desired 

MRM deceleration level) 

Class 4 
High 

Automation 

ï (C)AVs capable of Level 4 automation (automation activated) 

ï Proactive ToC (prolonged duration) 

ï MRM capability (in the rightmost lane depending on speed and a predetermined 

desired MRM deceleration level) 
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Table 3: Artificial vehicle mixes for baseline simulations during 1st project iteration. 

Vehicle 

Mix  

Class 1 Class 1 

(Conn.) 

Class 2 Class 2 

(Conn.) 

Class 3 Class 3 

(Conn.) 

Class 4 Class 4 

(Conn.) 

1 60% 10% - 15% - 15% - - 

2 40% 10% - 25% - 25% - - 

3 10% 10% - 40% - 40% - - 

 

4.3. Simulation and analysis methodology 

The initial proof-of-concepts of traffic management measures were implemented using the SUMO microscopic 

traffic simulator for a realistic representation of traffic, and the Python programming environment to code the 

traffic management procedures. We are currently in the process of porting these to the iTETRIS simulation 

platform which additionally includes the ns-3 simulator to achieve realistic communication capabilities and 

collective sensing. They are calibrated and validated using predefined sets of KPIs/metrics. For each use case, 

we compare the cases with and without (i.e. base line) active traffic management measures. They are evaluated 

on their impacts on traffic efficiency (network-wide in terms of average speeds and throughput, and local in 

terms of tempo-spatial diagrams), traffic safety (by means of the number of events where a time-to-collision 

lower than 3 seconds occurred), and the environmental impacts (considering CO2 emissions as calculated by 

SUMO’s PHEMlight emissions model). 

 

 

Figure 2: Detail view of the merging area in SUMO for scenario 1. The grey lane is usually reserved for public transport but opened 

temporarily to provide a possibility to pass the construction works stretching over the two main lanes. Vehicle colours indicate the vehicle 

type (yellow for legacy vehicles, blue for CAVs, and white for CVs). 

5. Example Service 5 / Use case 5.1 

5.1. Introduction 

As an example, we look at Service 5 / Use case 5.1, i.e. Distribute ToC/MRM by scheduling ToCs. Here, 

external reasons might determine if automated driving will be forbidden in certain traffic areas (which we call 

‘no automated driving’ (NAD) zones). Service 5 aims to inform approaching C(A)Vs in order to initiate 

transitions to manual driving in a coordinated manner. In absence of additional guidance and coordination we 

expected to have an accumulated occurrence of transitions at specific locations, which can lead to adverse effects 

regarding traffic safety and efficiency. Thus, Service 5 implements a scheme for the distribution of TORs sent to 

C(A)Vs ahead of the NAD zone within a dedicated TOR area (as shown in Figure 3). 

 

Figure 3: Schematic distribution area for TORs within a transition area. 
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5.2. Traffic management setup 

In Figure 4 the principle control logic of Service 5 is presented as a flow chart. The TMC monitors the area 

upstream of the NAD zone and regularly obtains positions and speeds from each C(A)V. Furthermore, 

information about the traffic distribution in the monitored area is derived from collective perception and road 

side detectors. 

 

 

Figure 4: Traffic management block diagram for use case 5.1. 

Consecutive C(A)Vs are pooled into groups at the entrance to the monitored area, and their transitions are 

supervised and coordinated algorithmically. The traffic management algorithm assigns a TOR schedule for every 

vehicle depending on the estimated density within the TOR area, the current position, and speed of the vehicle, 

and its position within the corresponding vehicle group. It takes in-group coordination into account, and aims to 

prevent the compounding of braking efforts. Generally speaking, the timeline of events for Service 5 is given as 

follows: 
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5.3. Simulation results 

Within TransAID, we simulate the different use cases first as a baseline using the earlier mentioned parameters, 

and then with the activation of the chosen traffic management service. For Service 5, we can see for example 

how, given the network, activation of the traffic management system leads to a higher average network speed 

compared to the baseline for Level of Service C, as shown in the graphs in Figure 5. 

 

 

Figure 5: Average network speeds for use case 5.1 (motorway network) simulation experiments (varying the LOS and vehicle mixes). 

Different bar colours correspond to baseline and traffic management simulations. 

Figure 6 illustrates the speed losses and reduced flows for the sample of LOS C, vehicle mix 3, seed 6. The NAD 

zone starts at a position of 2.5 km. For the baseline we observe a breakdown of average speed triggered by 

perturbances arising from several simultaneous ToCs at close locations. Such disruptions leading to a stationary 

bottleneck located at the NAD zone entry occur in most simulations runs sooner or later within the one hour 

simulation interval. Once developed, the bottleneck hardly dissolves if demand is not low (LOS B and C). In the 

depicted example the bottleneck emerges already after approximately five minutes and congestion rapidly grows 

filling the simulated area after approximately 25 minutes (cf. the red area in the upper left plot of the Figure). 

 

These phenomena vanish in the presence of a coordinated distribution of TORs. Even if local disruptions are 

present (i.e. the lighter spots in upper left plot of the Figure), the prevention of locally concentrated series of 

ToCs allows them to dissolve such that a smooth flow is re-established (cf. the green-yellow areas in lower right 

plot of the Figure). 

 

 

Figure 6: Example tempo-spatial diagrams for measured speeds for use case 5.1 (LOS C, vehicle mix 3, seed 6). The left diagram 

corresponds to the baseline and the right one to the applied traffic management Service 5 simulations. The white dashed line marks the entry 

position of the NAD zone. 
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6. Main results 

6.1. Results for all the use cases 

A complete overview of the results can be found in (TransAID D4.2, 2019). In the following paragraphs, we 

summarise the main results: 

 

¶ In the first service, path information was provided to AVs to circumvent road works via a bus lane. 

Simulation results indicated that overall traffic efficiency and CO2 emissions remained unchanged, 

while traffic safety was improved significantly. Safety critical events were reduced ranging from 45% 

to 70%, depending on the level of service and traffic composition. The reduction was larger in case of 

less traffic and more AVs. 

 

¶ The second service was applied to a motorway merge area where AVs are given speed advice to merge 

onto the motorway (see also Blokpoel, 2019). The service slightly increased average network speed and 

slightly decreased CO2 emissions, especially in case of higher demand (LOS C). The impact on safety 

was more pronounced with a reduction of critical events around 75%. 

 

¶ The third service was applied to a merging situation where two two-lane motorways merge into one 

four-lane motorway. The idea is to harmonise traffic by assigning the outer lanes to AVs, thereby 

reducing close interactions between non-automated vehicles and AVs in the merging area. Only in case 

of higher shares of AVs (> 25% level 2, > 25% level 3) in combination with LOS B or C, improvements 

were observed in throughput at the cost of slightly lower average network speeds and a decrease in 

safety. In short, rearranging traffic to dedicated lanes shows largely similar performance to 

‘uncontrolled merging’ (i.e. no measures). However, we hypothesise that separating traffic can 

outperform uncontrolled merging when cooperative manoeuvring is applied. 

 

¶ For Service 4 both an urban and motorway scenario were studied with similar network layouts. On a 

two-lane road we created safe spots upstream of a road works zone on the left lane for AVs to stop in 

case they reach the limit of their operational design domain. In this case the open right lane remains 

unblocked. As expected, traffic, safety and environmental benefits are realised. Only in case of 

congestion, when traffic is already moving slowly, the improvement diminishes. 

 

¶ Finally, a no automated driving zone was simulated along the downstream part of a two-lane motorway 

for the fifth service. The zone can represent different situations (e.g., road works, geofences, weather, 

accidents, …) that prevent AVs from staying in automated driving mode. It is assumed that AVs 

increase their headway before handing over control to the driver. When this happens in a concentrated 

fashion just before the no-AD zone, traffic flow is impacted. We therefore distribute these handovers in 

time and space upstream of the zone. It was found that this service greatly smoothens out the 

disturbances caused by the handovers and improves traffic efficiency, as also elaborated upon Section 

0. 

6.2. Next steps and new use cases 

The infrastructure-assisted management solutions are developed and tested in two iterations, each taking half of 

the project total duration. During the first iteration, the focus lay on studying aspects of transition of control and 

transition areas through basic scenarios. To this end, we developed and adopted realistic models for automated 

driving and ToC. Using the basic scenarios, we ran many simulations and focused in detail on the relatively new 

aspects of ToC, transition areas and measures mitigating negative effects of TAs. The goal of the first iteration 

was to gain experience with all aspects relevant to TAs and the mitigating measures. During the second iteration 

which has just started, all of the previous experience is used to improve/extend the measures while at the same 

time increasing the complexity/realism of the scenarios and/or selecting different (more complex) scenarios. 

Moreover, it is used to enhance AV and driver models to accurately capture the effects of ToCs/MRMs on 

safety, traffic efficiency, and the environment. 
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To this end, we will also focus on the following new scenarios: Scenario 1.3 (Queue spillback at exit ramp), 

Scenario 2.3 (Intersection handling due to incident), and Scenario 4.1 + Service 5 (4.1-5) (Distributed safe spots 

along an urban corridor). 

 

Scenario 1.3 Scenario 2.3 Scenario 4.1 + Service 5 

   

 
 

 

 

These new scenarios partly focus on new situations and others combine multiple measures (services) into one 

scenario. It is expected the hierarchical approach of applying multiple services (i.e. speed and lane advice, safe 

spot reservation, and ToC requests) in parallel or sequential will result in improved mitigation of the negative 

impact of transition areas. In addition, we will research ideas to improve on vehicle modelling (i.e. lane change 

behaviour and ToC/MRM behaviour). Moreover, enhanced cooperative manoeuvring (merging) will be also 

investigated. Furthermore, to focus on more realistic scenarios, each scenario will be extended with opposite 

traffic to create realistic communication traffic and support the evaluation of possible congestion of the 

communication channels. Also, other types of vehicles will be used to create a more realistic traffic mix (i.e. 

adding light good vehicles and heavy good vehicles), aside from the already proposed mixes of vehicles 

encompassing different communication and automation capabilities. 

 

7. Conclusions 

It is clear that advanced traffic management procedures lead to a more performant, safer, and cleaner traffic 

system, when taking the capabilities of connected and autonomous vehicles into account. As an example of a 

traffic management service, our baseline simulations confirmed the hypothesis that a coordinated distribution of 

takeover events can prevent a drop in traffic efficiency in areas where an accumulated occurrence of transitions 

may be expected. For the assessment we assumed that in absence of a managed TOR coordination the takeover 

events will be concentrated closer to the area, where no automated driving is possible. Our simulation results 

encourage the pursuit of the approach of ToC distribution. As the main reason for the effectiveness of this we 

identified the prevention of compounding braking efforts occurring if a sequence of CAVs performs transitions 

to manual driving simultaneously. 
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