

Can Beacons be Compressed to Reduce the Channel
Load in Vehicular Networks?

Miguel Sepulcre, Pedro Tercero, Javier Gozalvez
UWICORE Laboratory, http://www.uwicore.umh.es/

Universidad Miguel Hernández de Elche (UMH), Spain
msepulcre@umh.es, pedro.tercero@alu.umh.es, j.gozalvez@umh.es

Abstract—Significant efforts have been devoted to date to the
congestion control problem in vehicular networks. The solutions
proposed so far have been designed to adapt the communication
parameters to reduce and control the channel load. A totally
different approach would be the compression of the data
generated by each vehicle. This paper proposes and explores for
the first time the use of data compression to reduce the channel
load in vehicular networks. By compressing and decompressing
V2X messages, the channel load generated could be reduced,
thereby decreasing the interference and packet loses due to
collisions. We apply this idea in this study to CAMs using existing
data compression tools to have a first estimate of the compression
gain that could be achieved, and the time needed to compress and
decompress. The results obtained show that the CAM length
could be reduced by up to around 14%, which is a non-negligible
percentage given the relevance of the congestion control problem.
The data compression and decompression times obtained
demonstrate its potential for its integration in V2X devices. The
results obtained motivate to more deeply investigate the
compression of V2X messages in vehicular networks.

Keywords—vehicular networks, data compression, beaconing,
congestion control, DCC, V2X communications, channel load.

I. INTRODUCTION
Bandwidth is a scarce resource in any communication

system or network. Vehicular networks are not an exception
and significant efforts have been dedicated to date to design
congestion control protocols that reduce and control the
channel load. One of the most relevant ones is the DCC
(Decentralized Congestion Control) solution defined by ETSI
in Europe that spans over multiple layers of the protocol stack
[1]. The solutions proposed to date normally adapt the
communication parameters, e.g. transmission power, the
message transmission frequency or the data rate to control the
load. This type of solutions can influence the application’s
effectiveness, since they affect e.g. the communication range.

Data compression is an alternative approach to reduce the
channel load of vehicular networks that would not require the
modification of the communication parameters. Data
compression is widely used in communication systems to
improve the bandwidth utilization. For example, in HTTP, data
is compressed before it is sent from servers. Browsers are in

charge of downloading and decompressing the received data.
The most common compression schemes used for HTTP
compression include Gzip and Compress [2]. According to [3],
HTTP compression can provide a compression gain of around
75% for text files (HTML, CSS, and JavaScript) with file sizes
between 26.000 Bytes and 74.000 Bytes, approximately.

This paper proposes and explores for the first time the use
of data compression to reduce the channel load in vehicular
networks. We propose that the payload of V2X messages is
compressed after being generated by the upper layers to reduce
the number of bits of each message without reducing the
amount of information to be sent. This could be implemented
at the Facilities layer of the ETSI or ISO ITS Architectures, or
above the WSMP Transport Layer of the 1609/WAVE
Architecture. At the receiver, compressed V2X messages will
need to be decompressed to recover the original messages. A
new module could be incorporated to the protocol stack in all
vehicles for the data compression and decompression. The
proposed data compression would not require any other
significant modification of the protocol stack, which increases
its potential for standardization and real-world implementation.

The compression gain depends significantly on the size of
the input data and the type of data itself. For example, large
text files normally have repeated substrings (e.g. words) and
can be significantly compressed. This is the case because
compression algorithms are often designed to replace repeated
substrings with a pointer to the previous occurrence of the
repeated substrings. However, V2X messages are characterized
by having a relatively small size (hundreds of Bytes). In
addition, the content of V2X messages can significantly vary
and the existence of repeated substrings has not been studied
yet. Another issue is that V2X communication devices
integrated in vehicles have limited processing power.
Therefore, compression and decompression processes would
have to meet the strict latency requirements of vehicular
applications. All these factors could limit the feasibility of
using data compression in vehicular networks and therefore
require detailed investigations.

In this paper, we provide first results of data compression
and decompression in vehicular networks by evaluating the
compression gain and the time needed to compress and
decompress of different algorithms using existing open
software tools. In this study we apply the data compression to
CAMs (Cooperative Awareness Messages), also known as
beacons or BSMs (Basic Safety Messages), since they
consume a large portion of the vehicular control channel.

The authors acknowledge in part the support of the Conselleria de
Educación, Investigación, Cultura y Deporte of Generalitat Valenciana
through the project AICO/2018/A/095, the support of the Spanish Ministry of
Economy and Competitiveness and FEDER funds under the project
TEC2017-88612-R, and the support of the Horizon2020 Programme through
the TransAID project (Grant Agreement no. 723390).

II. DATA COMPRESSION
The two data compression tools analyzed in this study are

Compress [4] and Gzip [5]. Both tools are open source
solutions and widely used. They are based on the well-known
Lempel-Zip algorithm. This algorithm is a universal lossless
data compression algorithm that achieves compression by
looking for repeated substrings in the data.

Gzip makes use of the original Lempel-Ziv algorithm, also
known as LZ77 [6]. The LZ77 algorithm looks for repeated
substrings based on the concept of sliding window. As the data
is compressed, LZ77 only looks for repeated substrings in a
window of previously compressed data. The window can be
divided into a search buffer containing the data that has already
been compressed, and a lookahead buffer containing the data
yet to be compressed. As the data is compressed, the window
slides along, removing the oldest compressed data from the
search buffer and adding new uncompressed data to the
lookahead buffer. Once a substring in the lookahead buffer is
found to be completely contained in the search buffer, it is
replaced by its position in the search buffer and its length. The
output format produced by Gzip is described in RFC 1952 [7]
and includes a 10-byte header, some optional extra headers, the
compressed data and an 8-byte footer containing a CRC-32
checksum and the length of the original uncompressed data.

Compress uses the Lempel-Ziv-Welch algorithm or LZW
[8]. The LZW algorithm makes use of a dictionary that is built
based on the input data, where each entry in the dictionary has
an index. If the algorithm is configured to operate using bytes,
it is initialized with one entry for each of the 256 possible
values. When a substring, S, of the data being analyzed is
found in the dictionary, it is replaced by its index and a new
entry is added to the dictionary that contains S and the next
symbol in the data. This means that new entries are only added
if a prefix one byte shorter is already in the dictionary (e.g.
“sun” is only added if “su” had previously appeared in the
data).

The compression gain depends on the size of the input data
and the distribution of common substrings. Typically, LZ77
(Gzip) is able to achieve a compression gain of 60-70% for text
such as source code or English, while LZW (Compress) is able
to achieve 50-60% also for text [4][5]. The compression gain
that these algorithms and software tools could provide when
compressing CAMs or other V2X messages needs yet to be
studied, because they significantly depend on their length and
their content (e.g. existence of repeated sequences).

III. CAM STRUCTURE AND FORMAT
A CAM is composed of one common header and multiple

containers [9]. The common header includes the protocol
version, the message type and the ID of the vehicle or RSU
(Road Side Unit) that transmits the CAM. For vehicles, a CAM
must contain one Basic container and one High frequency
container (both are mandatory), and may also include one Low
frequency container and one or more other Special containers.
The Basic container includes information related to the
transmitting vehicle, such as the type of vehicle or its
geographic position. The High frequency container contains
highly dynamic information of the transmitting vehicle, such as

its heading or speed. The Low frequency container contains
static and not highly dynamic information of the transmitting
vehicle, such as the status of the exterior lights. The Special
vehicle container includes information specific to the vehicle
role. Each container is composed of a sequence of optional or
mandatory data elements (DE) and/or data frames (DF).

The CAM makes use of the ETSI common data dictionary
[10] and is formally defined in ASN.1 language in [9]. ASN.1
is a formal notation used for describing data transmitted by
telecommunications protocols, regardless of language
implementation and physical representation of these data. ETSI
also specifies that CAMs have to be encoded and decoded
following unaligned packed encoding rules (PER) [11]. These
rules describe how the values defined in ASN.1 should be
encoded for transmission (i.e. how they should be translated
into bits). At the transmitting vehicle, the output of the PER
encoding process would be the input of our data compression.
The corresponding security certificates would be added to the
compressed CAM following the ETSI specifications.

The length of the CAM depends on the number of optional
containers considered. Since many containers, DEs and DFs
are optional in the CAM, we have classified the CAMs
generated in three different groups with different lengths:

 Group BH (Basic and High frequency): CAMs belonging
to this group only contain the mandatory DEs and DFs,
i.e. the Basic container and the High frequency container.

 Group BHL (Basic, High and Low frequency): CAMs
that belong to this group contain the same DEs and DFs
than group BH, plus the Low frequency container.

 Group BHLS (Basic, High and Low frequency and
Special): CAMs belonging to this group contain the same
DEs and DFs than group BHL, plus the Special vehicle
container and additional optional DEs and DFs not
included in previous groups.

To analyze the performance of data compression on CAMs,
we have generated 104 CAMs for each of the three groups
identified that are compliant with the ETSI specifications. To
this aim, we have mapped the ASN.1 definition of the CAM to
a Java data structure using ASN.1 Studio software tool. Using
Java, we have created our own code to generate CAMs. To
avoid limiting this study to a small set of CAMs generated with
similar values in the DEs and DFs, we have randomly
generated all the values in the DEs and DFs, i.e. random
speeds, geographic position, heading, etc. We have verified
that the CAMs we generate follow the ETSI specifications by
decoding them using online decoding tools provided by OSS
(http://asn1-playground.oss.com/) and MARBEN
(https://www.marben-products.com/decoder-asn1-automotive).

Fig. 1 shows the PDF (Probability Density Function) of the
length of the CAMs generated for the three groups defined.
The average length of the CAMs belonging to each group is
136 bytes, 195 bytes and 268 bytes for groups BH, BHL and
BHLS, respectively. The length of the CAMs depend on the
number of optional containers included, and is therefore
different for the three groups of CAMs defined. In addition, the
specific values of the DEs and DFs also have an influence on

the CAM length because of the unaligned PER rules. As a
consequence, a CAM composed of the same containers does
not always have the same length depending on the content of
the DEs and DFs. As a result, the length of the CAMs is not
exactly the same for all CAMs belonging to the same group.

Fig. 1. Length of the CAMs generated in this study.

IV. RESULTS
The results presented in this paper have been obtained

using Gzip 1.6-4 and Compress 4.2.4.4-15 with their default
parameters. The implemented software was executed in a
virtual machine running Ubuntu 16.04.5 over Windows 10
with 64 bits. All the tests were run in a desktop computer with
an Intel Core i5-4440 processor of 3.1GHz and 8GB of RAM
DDR3 (1GB of RAM was reserved for the virtual machine).

A. Compression gain
Using point clouds, Fig. 2 depicts the length of the

compressed CAMs as a function of their original length for the
three groups of CAMs considered in this study (BH, BHL and
BHLS) and the two data compression tools used (Compress
and Gzip). Each point in the figure represents one or more
CAMs because they often overlap. The dashed line in the
figure separates the CAMs that could be compressed (i.e. the
compressed length was lower than the original one) and the
CAMs that could not be compressed (i.e. the output of the
compression process had more bytes than the original CAM).
Therefore, all points that are below the dashed line represent
CAMs that could be successfully compressed. The results
presented in this figure demonstrate the potential of Compress
and Gzip to compress CAMs. For the shortest CAMs (group

BH, Fig. 2a), Gzip was not able to reduce the message size and
the output was larger than the original one. This effect is
normally referred to as negative compression, and is produced
due to a low redundancy in the data (low number of repeated
substrings) and the overhead produced by headers and footers.
It could be avoided by transmitting the original messages
instead of the compressed ones when a negative compression is
detected. Fig. 2 also shows that the length of the compressed
CAM does not only depend on the length of the original CAM,
but also on its content (i.e. the same original CAM length does
not always result in the same compressed CAM length).

The compression gain (CG) has been calculated in this
study for each CAM with the following equation:

100 o c

o

L LCG
L

where Lo is the length of the original CAM and Lc is the length
of the compressed CAM. This means that e.g. if CG=10%, the
length of the original CAM has been reduced by 10% thanks to
the data compression; similarly, a CAM of 100 bytes would be
reduced to 90 bytes if CG=10%. Fig. 3 plots the PDF of the
compression gains obtained. The results obtained show that
Compress outperforms Gzip for all groups of CAMs analyzed
in this study. As it can be observed, Compress produces
compression gains of around 5% for BH, around 10% for BHL
and around 12% for BHLS. The maximum compression gain
provided was around 14%. Gzip presents lower compression
gains, and it actually increases the length of the CAM around
10% for BH. Both Compress and Gzip have in general higher
compression gain as the length of the CAM increases (e.g.
higher gain for BHLS than for BHL or BH) due to the higher
possibility of finding repeated substrings.

B. Compression and decompression times
An important factor to determine the feasibility of data

compression for vehicular networks is the time needed to
compress and decompress each V2X message. This is the case
given the strict latency requirements of the V2X message
generation and reception. Fig. 4 depicts the average time
needed to compress and decompress a CAM obtained in this
study. These results have been obtained by directly measuring
the time needed by the desktop computer to
compress/decompress the CAMs generated. As it can be
observed in Fig. 4a, the average time needed for CAM

 (a) Group BH (b) Group BHL (c) Group BHLS

Fig. 2. Point clouds of compressed vs. original CAM lengths.

compression is between 3ms and 4ms (both Compress and
Gzip provide similar compression times). Since CAMs are
typically generated every 100ms, these results seem more than
reasonable for the practical implementation of data
compression on the transmitting vehicle.

 (a) Compression (b) Decompression

Fig. 4. Average time needed to compress and decompress a CAM.

On the receiving vehicle, the decompression process is
simpler because it does not require to look for repeated
substrings, but just to replace the indexes/pointers by previous
occurrences of repeated substrings. The average time needed to
decompress a CAM is one order of magnitude lower (between
0.25ms and 0.45ms approximately, see Fig. 4b) than the
compression time. This means that roughly between 2200 and
4000 CAMs could be decompressed per second under the
considered conditions. The number of beacons that can be
successfully transmitted over the vehicular control channel is
around 1200 for a channel load of 60% when using IEEE
802.11p in a 10-MHz channel [12] (the load of the control
channel will be controlled and maintained around 60% thanks
to the congestion control algorithms). Therefore, the
decompression times achieved in this study would allow
decompressing fast enough all the messages that could be
received through the radio interface.

V. CONCLUSIONS
This paper proposes and explores for the first time the

compression of V2X messages to reduce the load in vehicular
networks. To do so, existing data compression tools have been
used to compress CAMs and evaluate their compression gain
and the time needed to compress/decompress. The results
obtained in this study show that CAMs can be compressed

between 4% and 14% approximately. However, the
compression gain notably depends on the CAM size, its
content and the compression algorithm used. The data
compression and decompression times obtained could be
sufficient to enable its implementation in current V2X devices.
This paper motivates further studies on data compression to
optimize the compression gain and the time needed to
compress/decompress CAMs. To increase the compression
gain, the security overhead could be compressed together with
the payload to augment its length and the possibility of having
repeated substrings. Also, unnecessary headers and footers
could be removed to maximize the compression gain. Other
types of compression algorithms and V2X messages could also
be studied.

REFERENCES
[1] ETSI TC ITS, “Intelligent Transport Systems (ITS); Cross Layer DCC

Management Entity for operation in the ITS G5A and ITS G5B
medium”, ETSI TS 103 175, v1.1.1, June 2016.

[2] IETF, “Hypertext Transfer Protocol -- HTTP/1.1”, The Internet Society
(1999). Online available: https://tools.ietf.org/html/rfc2616

[3] Andrew B. King, “Speed Up Your Site: Web Site Optimization”, New
Riders Press, ISBN-10: 0735713243, January 2003.

[4] Ubuntu Documentation: Compress. Online [last access on Sept. 2018]:
http://manpages.ubuntu.com/manpages/xenial/man1/compress.1.html

[5] GNU Documentation: Gzip. Online [last access on Sept. 2018]:
https://www.gnu.org/software/gzip/

[6] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression”, IEEE Transactions on Information Theory, vol. 23, no.
3, pp. 337–343, May 1977.

[7] IETF, “GZIP file format specification version 4.3”, The Internet Society
(1996). Online available: https://tools.ietf.org/html/rfc1952

[8] Terry A. Welch, “A Technique for High Performance Data
Compression”, IEEE Computer, vol. 17, no. 6, pp. 8-19, June 1984.

[9] ETSI TC ITS, “Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 2: Specification of
Cooperative Awareness Basic Service”, ETSI EN 302 637-2 V1.3.2,
Nov. 2014.

[10] ETSI TC ITS, “Intelligent Transport Systems (ITS); Users and
applications requirements; Part 2: Applications and facilities layer
common data dictionary”, ETSI TS 102 894-2, v1.2.1, Sept. 2014.

[11] ITU-T, “Information technology – ASN.1 encoding rules: Specification
of Packed Encoding Rules (PER)”, Recommendation ITU-T X.691,
August 2015.

[12] G. Bansal, et al., “LIMERIC: A Linear Adaptive Message Rate
Algorithm for DSRC Congestion Control”, IEEE Transactions on
Vehicular Technology, vol. 62, no. 9, pp. 4182-4197, Nov. 2013.

 (a) Group BH (b) Group BHL (c) Group BHLS

Fig. 3. Probability Density Function of the CAM compression gain.

