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Abstract—Significant efforts have been devoted to date to the 
congestion control problem in vehicular networks. The solutions 
proposed so far have been designed to adapt the communication 
parameters to reduce and control the channel load. A totally 
different approach would be the compression of the data 
generated by each vehicle. This paper proposes and explores for 
the first time the use of data compression to reduce the channel 
load in vehicular networks. By compressing and decompressing 
V2X messages, the channel load generated could be reduced, 
thereby decreasing the interference and packet loses due to 
collisions. We apply this idea in this study to CAMs using existing 
data compression tools to have a first estimate of the compression 
gain that could be achieved, and the time needed to compress and 
decompress. The results obtained show that the CAM length 
could be reduced by up to around 14%, which is a non-negligible 
percentage given the relevance of the congestion control problem. 
The data compression and decompression times obtained 
demonstrate its potential for its integration in V2X devices. The 
results obtained motivate to more deeply investigate the 
compression of V2X messages in vehicular networks.  
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I. INTRODUCTION  
Bandwidth is a scarce resource in any communication 

system or network. Vehicular networks are not an exception 
and significant efforts have been dedicated to date to design 
congestion control protocols that reduce and control the 
channel load. One of the most relevant ones is the DCC 
(Decentralized Congestion Control) solution defined by ETSI 
in Europe that spans over multiple layers of the protocol stack 
[1]. The solutions proposed to date normally adapt the 
communication parameters, e.g. transmission power, the 
message transmission frequency or the data rate to control the 
load. This type of solutions can influence the application’s 
effectiveness, since they affect e.g. the communication range.  

Data compression is an alternative approach to reduce the 
channel load of vehicular networks that would not require the 
modification of the communication parameters. Data 
compression is widely used in communication systems to 
improve the bandwidth utilization. For example, in HTTP, data 
is compressed before it is sent from servers. Browsers are in 

charge of downloading and decompressing the received data. 
The most common compression schemes used for HTTP 
compression include Gzip and Compress [2]. According to [3], 
HTTP compression can provide a compression gain of around 
75% for text files (HTML, CSS, and JavaScript) with file sizes 
between 26.000 Bytes and 74.000 Bytes, approximately.  

This paper proposes and explores for the first time the use 
of data compression to reduce the channel load in vehicular 
networks. We propose that the payload of V2X messages is 
compressed after being generated by the upper layers to reduce 
the number of bits of each message without reducing the 
amount of information to be sent. This could be implemented 
at the Facilities layer of the ETSI or ISO ITS Architectures, or 
above the WSMP Transport Layer of the 1609/WAVE 
Architecture. At the receiver, compressed V2X messages will 
need to be decompressed to recover the original messages. A 
new module could be incorporated to the protocol stack in all 
vehicles for the data compression and decompression. The 
proposed data compression would not require any other 
significant modification of the protocol stack, which increases 
its potential for standardization and real-world implementation. 

The compression gain depends significantly on the size of 
the input data and the type of data itself. For example, large 
text files normally have repeated substrings (e.g. words) and 
can be significantly compressed. This is the case because 
compression algorithms are often designed to replace repeated 
substrings with a pointer to the previous occurrence of the 
repeated substrings. However, V2X messages are characterized 
by having a relatively small size (hundreds of Bytes). In 
addition, the content of V2X messages can significantly vary 
and the existence of repeated substrings has not been studied 
yet. Another issue is that V2X communication devices 
integrated in vehicles have limited processing power. 
Therefore, compression and decompression processes would 
have to meet the strict latency requirements of vehicular 
applications. All these factors could limit the feasibility of 
using data compression in vehicular networks and therefore 
require detailed investigations.  

In this paper, we provide first results of data compression 
and decompression in vehicular networks by evaluating the 
compression gain and the time needed to compress and 
decompress of different algorithms using existing open 
software tools. In this study we apply the data compression to 
CAMs (Cooperative Awareness Messages), also known as 
beacons or BSMs (Basic Safety Messages), since they 
consume a large portion of the vehicular control channel. 
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II. DATA COMPRESSION  
The two data compression tools analyzed in this study are 

Compress [4] and Gzip [5]. Both tools are open source 
solutions and widely used. They are based on the well-known 
Lempel-Zip algorithm. This algorithm is a universal lossless 
data compression algorithm that achieves compression by 
looking for repeated substrings in the data. 

Gzip makes use of the original Lempel-Ziv algorithm, also 
known as LZ77 [6]. The LZ77 algorithm looks for repeated 
substrings based on the concept of sliding window. As the data 
is compressed, LZ77 only looks for repeated substrings in a 
window of previously compressed data. The window can be 
divided into a search buffer containing the data that has already 
been compressed, and a lookahead buffer containing the data 
yet to be compressed. As the data is compressed, the window 
slides along, removing the oldest compressed data from the 
search buffer and adding new uncompressed data to the 
lookahead buffer. Once a substring in the lookahead buffer is 
found to be completely contained in the search buffer, it is 
replaced by its position in the search buffer and its length. The 
output format produced by Gzip is described in RFC 1952 [7] 
and includes a 10-byte header, some optional extra headers, the 
compressed data and an 8-byte footer containing a CRC-32 
checksum and the length of the original uncompressed data. 

Compress uses the Lempel-Ziv-Welch algorithm or LZW 
[8]. The LZW algorithm makes use of a dictionary that is built 
based on the input data, where each entry in the dictionary has 
an index. If the algorithm is configured to operate using bytes, 
it is initialized with one entry for each of the 256 possible 
values. When a substring, S, of the data being analyzed is 
found in the dictionary, it is replaced by its index and a new 
entry is added to the dictionary that contains S and the next 
symbol in the data. This means that new entries are only added 
if a prefix one byte shorter is already in the dictionary (e.g. 
“sun” is only added if “su” had previously appeared in the 
data). 

The compression gain depends on the size of the input data 
and the distribution of common substrings. Typically, LZ77 
(Gzip) is able to achieve a compression gain of 60-70% for text 
such as source code or English, while LZW (Compress) is able 
to achieve 50-60% also for text [4][5]. The compression gain 
that these algorithms and software tools could provide when 
compressing CAMs or other V2X messages needs yet to be 
studied, because they significantly depend on their length and 
their content (e.g. existence of repeated sequences).  

III. CAM STRUCTURE AND FORMAT 
A CAM is composed of one common header and multiple 

containers [9]. The common header includes the protocol 
version, the message type and the ID of the vehicle or RSU 
(Road Side Unit) that transmits the CAM. For vehicles, a CAM 
must contain one Basic container and one High frequency 
container (both are mandatory), and may also include one Low 
frequency container and one or more other Special containers. 
The Basic container includes information related to the 
transmitting vehicle, such as the type of vehicle or its 
geographic position. The High frequency container contains 
highly dynamic information of the transmitting vehicle, such as 

its heading or speed. The Low frequency container contains 
static and not highly dynamic information of the transmitting 
vehicle, such as the status of the exterior lights. The Special 
vehicle container includes information specific to the vehicle 
role. Each container is composed of a sequence of optional or 
mandatory data elements (DE) and/or data frames (DF).  

The CAM makes use of the ETSI common data dictionary 
[10] and is formally defined in ASN.1 language in [9]. ASN.1 
is a formal notation used for describing data transmitted by 
telecommunications protocols, regardless of language 
implementation and physical representation of these data. ETSI 
also specifies that CAMs have to be encoded and decoded 
following unaligned packed encoding rules (PER) [11]. These 
rules describe how the values defined in ASN.1 should be 
encoded for transmission (i.e. how they should be translated 
into bits). At the transmitting vehicle, the output of the PER 
encoding process would be the input of our data compression. 
The corresponding security certificates would be added to the 
compressed CAM following the ETSI specifications. 

The length of the CAM depends on the number of optional 
containers considered. Since many containers, DEs and DFs 
are optional in the CAM, we have classified the CAMs 
generated in three different groups with different lengths: 

 Group BH (Basic and High frequency): CAMs belonging 
to this group only contain the mandatory DEs and DFs, 
i.e. the Basic container and the High frequency container. 

 Group BHL (Basic, High and Low frequency): CAMs 
that belong to this group contain the same DEs and DFs 
than group BH, plus the Low frequency container. 

 Group BHLS (Basic, High and Low frequency and 
Special): CAMs belonging to this group contain the same 
DEs and DFs than group BHL, plus the Special vehicle 
container and additional optional DEs and DFs not 
included in previous groups.  

To analyze the performance of data compression on CAMs, 
we have generated 104 CAMs for each of the three groups 
identified that are compliant with the ETSI specifications. To 
this aim, we have mapped the ASN.1 definition of the CAM to 
a Java data structure using ASN.1 Studio software tool. Using 
Java, we have created our own code to generate CAMs. To 
avoid limiting this study to a small set of CAMs generated with 
similar values in the DEs and DFs, we have randomly 
generated all the values in the DEs and DFs, i.e. random 
speeds, geographic position, heading, etc. We have verified 
that the CAMs we generate follow the ETSI specifications by 
decoding them using online decoding tools provided by OSS 
(http://asn1-playground.oss.com/) and MARBEN 
(https://www.marben-products.com/decoder-asn1-automotive). 

Fig. 1 shows the PDF (Probability Density Function) of the 
length of the CAMs generated for the three groups defined. 
The average length of the CAMs belonging to each group is 
136 bytes, 195 bytes and 268 bytes for groups BH, BHL and 
BHLS, respectively. The length of the CAMs depend on the 
number of optional containers included, and is therefore 
different for the three groups of CAMs defined. In addition, the 
specific values of the DEs and DFs also have an influence on 



the CAM length because of the unaligned PER rules. As a 
consequence, a CAM composed of the same containers does 
not always have the same length depending on the content of 
the DEs and DFs. As a result, the length of the CAMs is not 
exactly the same for all CAMs belonging to the same group. 

 
Fig. 1. Length of the CAMs generated in this study. 

IV. RESULTS 
The results presented in this paper have been obtained 

using Gzip 1.6-4 and Compress 4.2.4.4-15 with their default 
parameters. The implemented software was executed in a 
virtual machine running Ubuntu 16.04.5 over Windows 10 
with 64 bits. All the tests were run in a desktop computer with 
an Intel Core i5-4440 processor of 3.1GHz and 8GB of RAM 
DDR3 (1GB of RAM was reserved for the virtual machine). 

A. Compression gain 
Using point clouds, Fig. 2 depicts the length of the 

compressed CAMs as a function of their original length for the 
three groups of CAMs considered in this study (BH, BHL and 
BHLS) and the two data compression tools used (Compress 
and Gzip). Each point in the figure represents one or more 
CAMs because they often overlap. The dashed line in the 
figure separates the CAMs that could be compressed (i.e. the 
compressed length was lower than the original one) and the 
CAMs that could not be compressed (i.e. the output of the 
compression process had more bytes than the original CAM). 
Therefore, all points that are below the dashed line represent 
CAMs that could be successfully compressed. The results 
presented in this figure demonstrate the potential of Compress 
and Gzip to compress CAMs. For the shortest CAMs (group 

BH, Fig. 2a), Gzip was not able to reduce the message size and 
the output was larger than the original one. This effect is 
normally referred to as negative compression, and is produced 
due to a low redundancy in the data (low number of repeated 
substrings) and the overhead produced by headers and footers. 
It could be avoided by transmitting the original messages 
instead of the compressed ones when a negative compression is 
detected. Fig. 2 also shows that the length of the compressed 
CAM does not only depend on the length of the original CAM, 
but also on its content (i.e. the same original CAM length does 
not always result in the same compressed CAM length). 

The compression gain (CG) has been calculated in this 
study for each CAM with the following equation: 

100 o c
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where Lo is the length of the original CAM and Lc is the length 
of the compressed CAM. This means that e.g. if CG=10%, the 
length of the original CAM has been reduced by 10% thanks to 
the data compression; similarly, a CAM of 100 bytes would be 
reduced to 90 bytes if CG=10%. Fig. 3 plots the PDF of the 
compression gains obtained. The results obtained show that 
Compress outperforms Gzip for all groups of CAMs analyzed 
in this study. As it can be observed, Compress produces 
compression gains of around 5% for BH, around 10% for BHL 
and around 12% for BHLS. The maximum compression gain 
provided was around 14%. Gzip presents lower compression 
gains, and it actually increases the length of the CAM around 
10% for BH. Both Compress and Gzip have in general higher 
compression gain as the length of the CAM increases (e.g. 
higher gain for BHLS than for BHL or BH) due to the higher 
possibility of finding repeated substrings. 

B. Compression and decompression times 
An important factor to determine the feasibility of data 

compression for vehicular networks is the time needed to 
compress and decompress each V2X message. This is the case 
given the strict latency requirements of the V2X message 
generation and reception. Fig. 4 depicts the average time 
needed to compress and decompress a CAM obtained in this 
study. These results have been obtained by directly measuring 
the time needed by the desktop computer to 
compress/decompress the CAMs generated. As it can be 
observed in Fig. 4a, the average time needed for CAM 

 
 (a) Group BH (b) Group BHL (c) Group BHLS 

Fig. 2. Point clouds of compressed vs. original CAM lengths. 



compression is between 3ms and 4ms (both Compress and 
Gzip provide similar compression times). Since CAMs are 
typically generated every 100ms, these results seem more than 
reasonable for the practical implementation of data 
compression on the transmitting vehicle.  

 
 (a) Compression (b) Decompression 

Fig. 4. Average time needed to compress and decompress a CAM. 

On the receiving vehicle, the decompression process is 
simpler because it does not require to look for repeated 
substrings, but just to replace the indexes/pointers by previous 
occurrences of repeated substrings. The average time needed to 
decompress a CAM is one order of magnitude lower (between 
0.25ms and 0.45ms approximately, see Fig. 4b) than the 
compression time. This means that roughly between 2200 and 
4000 CAMs could be decompressed per second under the 
considered conditions. The number of beacons that can be 
successfully transmitted over the vehicular control channel is 
around 1200 for a channel load of 60% when using IEEE 
802.11p in a 10-MHz channel [12] (the load of the control 
channel will be controlled and maintained around 60% thanks 
to the congestion control algorithms). Therefore, the 
decompression times achieved in this study would allow 
decompressing fast enough all the messages that could be 
received through the radio interface. 

V. CONCLUSIONS 
This paper proposes and explores for the first time the 

compression of V2X messages to reduce the load in vehicular 
networks. To do so, existing data compression tools have been 
used to compress CAMs and evaluate their compression gain 
and the time needed to compress/decompress. The results 
obtained in this study show that CAMs can be compressed 

between 4% and 14% approximately. However, the 
compression gain notably depends on the CAM size, its 
content and the compression algorithm used. The data 
compression and decompression times obtained could be 
sufficient to enable its implementation in current V2X devices. 
This paper motivates further studies on data compression to 
optimize the compression gain and the time needed to 
compress/decompress CAMs. To increase the compression 
gain, the security overhead could be compressed together with 
the payload to augment its length and the possibility of having 
repeated substrings. Also, unnecessary headers and footers 
could be removed to maximize the compression gain. Other 
types of compression algorithms and V2X messages could also 
be studied.  
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Fig. 3. Probability Density Function of the CAM compression gain. 


