

# Analysis of Message Generation Rules for Collective Perception in Connected and Automated Driving

Gokulnath Thandavarayan, Miguel Sepulcre, Javier Gozalvez

gthandavarayan@umh.es, msepulcre@umh.es, j.gozalvez@umh.es





### Introduction

- Automated Vehicles are equipped with multiple sensors
  - Sensors limitations degrade perception capabilities
- Connected and Automated Vehicles perform V2X communication
  - Improve perception by exchange sensor information
  - Commonly referred as collective perception
- ETSI draft standard for collective perception
  - Defines message format and structure
  - Defines message generation rules
- Analyze impact of different message generation rules
  - Study trade-offs between perception and channel load

# **ETSI** collective perception standard

- Share sensor information as object descriptions
  - Basic information about position, speed and size of detected objects
  - Reduce message size
- Collective Perception Message (CPM) format:
  - Management & Station Data Container: information about transmitter
  - Sensor Information Containers: sensing capabilities
  - Perceived Object Containers: dynamic state and properties of objects

# **ETSI collective perception standard**

- CPM generation rules (checked every T)
  - Only a CPM is generated & detected objects included:
    - 1. If: New detected objects
    - 2. If: Previously detected Vulnerable Road Users (VRU) or animals
    - 3. If: Previously detected objects whose position changed > 4m
    - 4. If: Previously detected objects whose speed changed > 0.5m/s
    - 5. If: Previously detected objects included in CPM 1 second ago
  - Sensor Information Containers included in CPM once per second
  - If no object is detected: generate CPM once per second

CPMs generated with variable size and rate

- Simulation tools:
  - ns3 (ITSG5 communications)
  - SUMO (vehicle mobility)

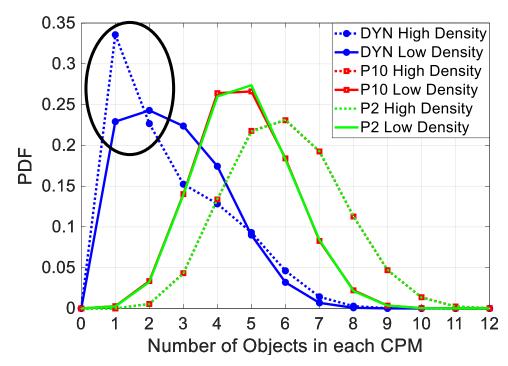
- Traffic parameters: (6 lane highway scenario)
  - High traffic density: 120 vehicles/km, 70km/h-59km/h speed
  - Low traffic density: 60 vehicles/km, 140km/h-118km/h speed

### Simulation set-up

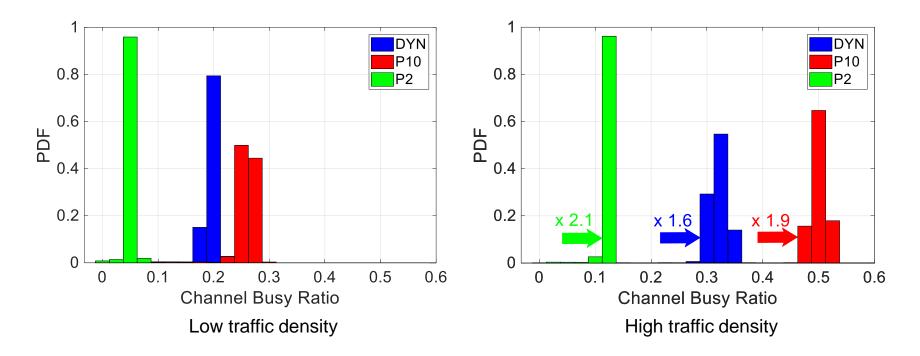
- Evaluated CPM generation policies
  - DYN: dynamic CPM generation following ETSI standard draft
  - P2: periodic CPM generation at 2Hz
  - P10: periodic CPM generation at 10Hz
- Onboard sensors:
  - 65m range and ±40 degrees
  - 150m range and ±5 degrees



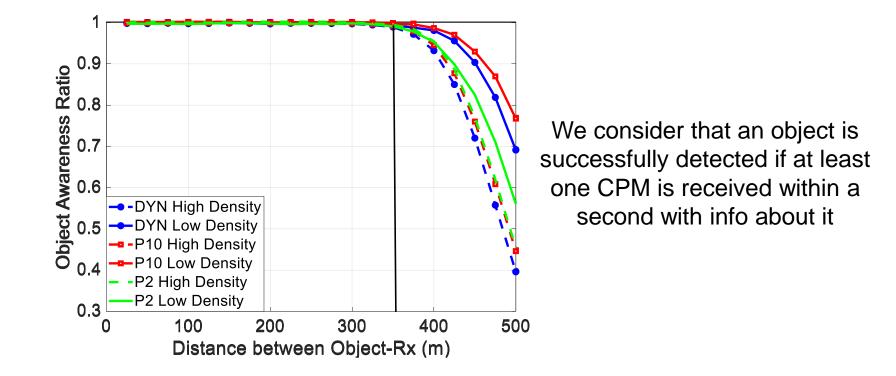
Only vehicles in Line of Sight can be detected


- Number of CPM transmitted per second
  - Depends on vehicle speed and traffic density
  - CPM rate higher than expected: mobility of objects

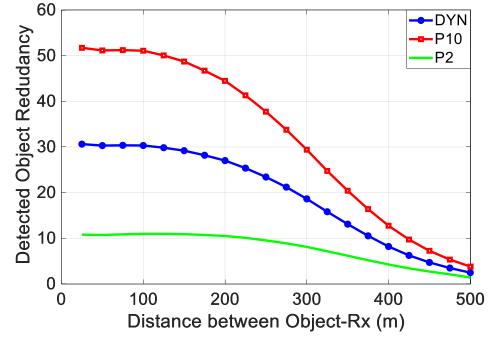



3. If: Previously detected objects whose position changed > 4m

Periodic rate: constant


- Number of objects transmitted in each CPM
  - P2 and P10: higher densities increase number of objects
  - DYN: lower number of objects, i.e. small CPMs
    - Trade-off: speed decrease with higher density




- Channel Busy Ratio: % of time that the channel is busy
  - DYN: intermediate channel load between P2 and P10
  - Same trends for high traffic density
    - Smallest relative increase for DYN due to lower speeds



- Object Awareness Ratio: probability of detecting an object
  - All configurations: awareness ratio higher than 0.98 up to 350m
  - Beyond 350m: degradation due to propagation and interferences



- Detected Object Redundancy: no. of times same object rx per sec
  - All policies provide a high number of updates / sec
  - Is this redundancy needed for connected and automated driving?



Low traffic density

- Collective perception
  - Designed to improve perception capabilities
- Evaluation of ETSI collective perception msg generation rules
  - Balance between perception and communication
- Open discussion
  - High detected object redudancy observed
  - Can it be further optimized?

# Thank you for your attention



Gokulnath Thandavarayan, Miguel Sepulcre, Javier Gozalvez <u>gthandavarayan@umh.es</u>, <u>msepulcre@umh.es</u>, <u>j.gozalvez@umh.es</u>

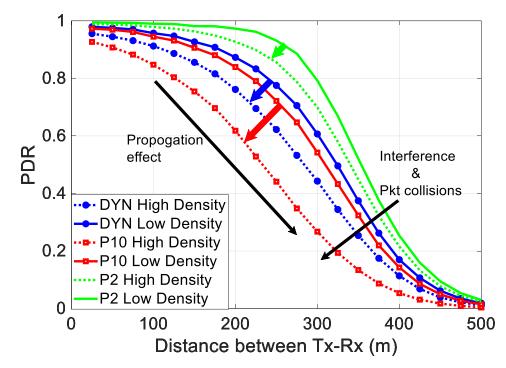


### **Backup: configurations**

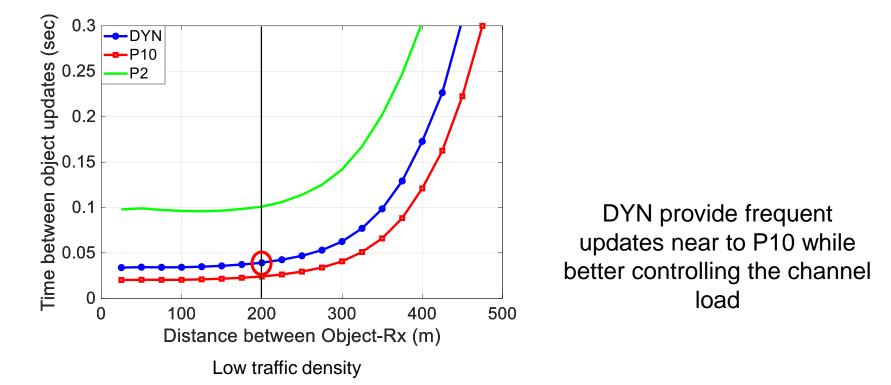
| CPM Container                | Size      |
|------------------------------|-----------|
| ITS PDU header               |           |
| Management Container         | 121 Bytes |
| Station Data Container       |           |
| Sensor Information Container | 35 Bytes  |
| Perceived Object Container   | 35 Bytes  |

|                 | Values                      |    |                     |
|-----------------|-----------------------------|----|---------------------|
| Parameter       | Low traffic                 | Н  | igh traffic density |
|                 | density                     |    |                     |
| Highway length  | 5km                         |    |                     |
| Number of lanes | 6 (3 per driving direction) |    |                     |
| Traffic density | 60 veh/km                   |    | 120 veh/km          |
| Speed per lane  | 140 km/h                    |    | 70 km/h             |
|                 | 132 km/h                    |    | 66 km/h             |
|                 | 118 km/                     | 'n | 59 km/h             |

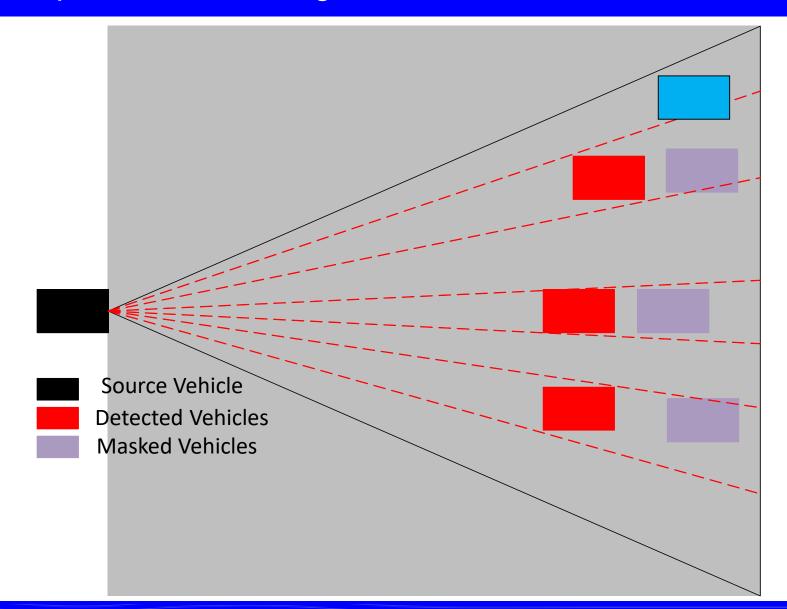
| Values           |
|------------------|
| 23dBm            |
| 0dBi             |
| 10MHz / 5.9GHz   |
|                  |
| 9dB              |
| -85dBm           |
|                  |
| 6Mbps (QPSK 1⁄2) |
|                  |


| Policy   | Traffic<br>density | CBR    |
|----------|--------------------|--------|
| Periodic | Low                | 5.6 %  |
| at 2Hz   | High               | 11.9 % |
| Periodic | Low                | 25.6 % |
| at 10Hz  | High               | 49.6 % |
| Dynamic  | Low                | 19.2 % |
| Dynamic  | High               | 31.7 % |

### **Backup: Configurations**


- Vehicles measure 5m x 2m
- Objects detected from two sensors are fused
- Traffic scenario is a six-lane highway with 5km length
- Lane width 4 meters
- Shadowing effect (sensor masking) implemented in XY-plane
- Statistics taken from 2km center of the simulation scenario
- All vehicles with ITS-G5 transceiver (100% penetration)
- All vehicles operate in the same channel
- The speeds have been selected based on statistics of a typical 3-lane US highway obtained from the PeMS database

- Communication parameters:
  - Transmission power: 23dBm
  - Antenna gain (tx and rx): 0dBi
  - Channel bandwidth/carrier freq.: 10MHz / 5.9GHz
  - Data rate: 6Mbps (QPSK ½)
  - Propagation model: Winner+B1 (pathloss and shadowing)


- Packet Delivery Ratio: prob of successfully receiving a CPM
  - Propagation effects: degradation with distance
  - Degradation due to interference and packet collisions
    - Higher CBR results in higher degradation



- Time between object updates: freshness of information
  - All policies: object updates below 0.1s up to 200m
  - DYN: object updates below 0.03s up to 200m



#### **Backup: Sensor Masking**



- Introduction
- ETSI collective perception standard
- Message generation rules
- Simulation set-up
- Evaluation results
- Conclusions