Artificial Intelligence and Traffic Systems Dr. Sven Maerivoet

27-28/09/2017 | CiTTi | Artificial Intelligence and Traffic Systems

Introducing TML

What is artificial intelligence?

- Artificial narrow intelligence ('weak AI')
 - Very <u>narrow, specific purpose</u>
 - Big Data and complex algorithms (chess players, Facebook wall, ...)
 - Will not pass Turing test
- Artificial general intelligence ('strong/true AI')
 - AI thinks as humans do (incl. intentionality)
 - Machines that are good at doing what comes easily for humans
 - Eventually learns and upgrades itself, on its own (~ 2035)
- Artificial superintelligence
 - Behold, the technological singularity! (~ 2040)
 - Cannot be easily 'turned off'

AI in a nutshell

- Background:
 - The study of `intelligent agents' (optimisation)
 - Goal: mimic cognitive functions learning / problem solving
- Techniques:
 - Multi-objective/level optimisation
 - (Fuzzy) reasoning engines
 - Multi-agent systems (MAS)
 - Artificial Neural Networks (ANNs)
 - Reinforcement learning
 - Classification and regression

➔ In general: machine learning through statistics

What about the `intelligence'?

- Some key ingredients:
 - Incremental problem solving (incl. learning)
 - Real-time adaptation to changing context/environment
 - Self-analysis (success ⇔ failure at tasks)
 - Memory (short- and long-term storage)
 - Cope with large volumes of data (cf. Vol/Var/Vel/Val/Ver)
- AI's highs and lows
 - Expectation management
 - AI Winters ('70-'90) and Summers
 - Nowadays: deep learning

Classic traffic management

Artificial Intelligence Traffic Management The Rise of Autonomous Vehicles Further Issues

- Scope (for <u>road</u> traffic):
 - The focus lies heavily on <u>urban</u> traffic management (i.e., traffic lights)
- Techniques:
 - Classic algorithmic solutions, simple heuristics, expert systems, ...
 - Ramp metering, speed harmonisation, route guidance, incident detection, ...
 - Some fancier stuff: congestion prediction (MPC), fuzzy logic, ...

Tools:

- Traffic Network Study Tool (TRANSYT)
- Split Cycle Offset Optimisation Technique (SCOOT)
- Urban Traffic Optimisation by Integrated Automation (UTOPIA)
- OPAC / Rhodes / OMNIA / MOTION / SCATS / Optimax / Green Logic / MOVA / LHOVRA / COCON / ...
- LISA+ / VERA+ / ANNA+ / INES+ / SYLVIA+

S. Maerivoet | CiTTi | Artificial Intelligence and Traffic Systems

Hierarchical control

- Similar to the Open Systems Interconnection (OSI)
 - PATH framework (US) / Dolphin framework (Japan)
 - Auto21 Collaborative Driving System (CDS) framework
 - Cooperative Vehicle-Infrastructure Systems (CVIS) (EU)
 - SafeSpot (EU FP6) / PReVENT (EU) / ...
- Possible layers:
 - Handheld ⇔ in-vehicle ⇔ roadside systems
 - Physical ⇔ regulation ⇔ coordination ⇔ planning ⇔ link ⇔ network
- Scope of the layers:
 - Controlling vehicle dynamics, manoeuvring, HMI, V2X, ...
 - Path/network/congestion control (platoon sizes, route assignments), ...
 - Global ⇔ locally distributed controllers

Organising complex systems

Artificial Intelligence Traffic Management The Rise of Autonomous Vehicles Further Issues

• Cf. Helbing's classification:

Central control, Travel time minimization, Coordination with "benevolent dictator" "homo economicus" neighbors, "homo socialis"

S. Maerivoet | CiTTi | Artificial Intelligence and Traffic Systems

Including 'social' aspects

- Shifting perspective towards the individual (informing)
- Input data for personalised services:
 - Twitter feeds / WhatsApp / Facebook traffic-related content
 - On-demand ride matching
 - Waze / Google Maps probes
 - Various floating vehicle data
 - C-ITS
- Social traffic management:
 - Leverage the power of the community
 - Accomplish large-scale behavioural changes

Current AI and traffic cases

- Traffic light control:
 - Congestion / queue length predictions
- In the automotive sector:

- Traffic sign / context recognition, ACC, ISA, route guidance, ...
- The Theory-Practice Gap (*experimental \rightarrow mainstream*)
 - Only limited advancements are exploited in the field
 - Currently AI is mostly used as a building block
 - Dealing with long platoons
 - Scalability (from a single freeway to network-wide coordination)

AI and traffic lights

- Intersection control has non-linearities and NP-hard
- Techniques:
 - Vehicles and intersections as intelligent agents
 - Self-organisation through ant-based optimisation
 - Information exchange (pheromones and evaporation)
 - 'Antiquette' (moving aside)
 - Ants speed up with density
 - Examples of decentralised control:
 - Pittsburgh: I2I(V) (+ unknown AI algorithms)
 - Toronto/Burlington (MARLIN): game theory + learning
 - Dresden: multimodal + model-based predictions
- Benefits: $25\%\downarrow$ TTs, $40\%\downarrow$ idling time, $20\%\downarrow$ braking, ...

AI adoption and AVs

cooperative connected automated mobility (CCAM)

Artificial Intelligence Traffic Management The Rise of Autonomous Vehicles **Further Issues**

Monitoring

of Driving

Performance

of Dynamic

Canability

(Driving

Steering and

Acceleration

- AVs require a model of the world around them
 - Lots of sensor inputs (camera's, LIDAR, wheel encoder, GPS, ...)
 - Goal: remove the (absolute) need for pre-programmed maps
- AV levels:

– Level 5 \rightarrow

- Level $3 \rightarrow$ feasible
- Level 4 \rightarrow promised 2025 (Honda)

Narrative Definitio

Name

 The AV revolution will enable/require traffic management on a higher and broader level (+ infrastructure modifications)

No more traffic lights?

- "Traffic lights are no solution, they cause people to speed like hell and brake like idiots"
- It's not about structurally changing into a roundabout
- Experiments with traffic lights switched off (UK)
- But mostly operating very locally and with low volumes (+ at the cost of pedestrians' waiting times)

AVs negotiating intersections

Artificial Intelligence Traffic Management The Rise of Autonomous Vehicles Further Issues

Slot-based (platoons ⇔ individual vehicles)

S. Maerivoet | CiTTi | Artificial Intelligence and Traffic Systems

Network-wide management

- Currently: ATMS \Leftrightarrow ATIS interactions + manual work
- Go beyond `multiple intersections' (automatically!)
- Singapore:
 - Intelligent route finding algorithms
 - Minimise probability of traffic breakdown
 - Crucial element: non-linearity of congestion (10% connected)
- Traffic Management 2.0 (<u>www.tm20.org</u>)
 - Collaborations between road operators and service providers
 - Common interfaces, principles, and business models

Further issues

- Dealing with transition areas (e.g., road works)
 - (Early) warning systems
 - Pro-active (mandatory) control of approaching vehicles
- To what degree can we automate the processes?
 - Discovering seeds of congestion (different patterns)
 - Finetuning ramp metering, VMS, ...
 - Where to put the emphasis (i.e., what goal to optimise)?
- Various other issues:
 - Responsabilities and ethics (cf. AV debates)
 - Standards (EC ⇔ OEM ⇔ global consortia)

A note on the future of AI

- The evolution of the human race will go much quicker than that of the AI (cf. 2035-2040 time horizon)
 - Changes in mobility patterns
 - Changes in travel behaviour
 - Changes in infrastructure, vehicles, and communication
- Good ⇔ Bad AI (= human concepts) (abstract away)

More information?

• Transport & Mobility Leuven:

<u>http://www.tmleuven.be/</u>

- Data Enrichment Group:
 - <u>http://www.tmleuven.be/expertise/deg/</u>
 - lars.akkermans@tmleuven.be
 - +32 (16) 31.77.34
 - sven.maerivoet@tmleuven.be
 - +32 (16) 31.77.33

