Introducing TML

Artificial Intelligence
Traffic Management
The Rise of Autonomous Vehicles
Further Issues
What is artificial intelligence?

- **Artificial narrow intelligence (‘weak AI’)**
 - Very narrow, specific purpose
 - Big Data and complex algorithms (chess players, Facebook wall, …)
 - Will not pass Turing test

- **Artificial general intelligence (‘strong/true AI’)**
 - AI thinks as humans do (incl. intentionality)
 - Machines that are good at doing what comes easily for humans
 - Eventually learns and upgrades itself, on its own (~ 2035)

- **Artificial superintelligence**
 - Behold, the technological singularity! (~ 2040)
 - Cannot be easily ‘turned off’
AI in a nutshell

● Background:
 – The study of ‘intelligent agents’ (optimisation)
 – Goal: mimic cognitive functions learning / problem solving

● Techniques:
 – Multi-objective/level optimisation
 – (Fuzzy) reasoning engines
 – Multi-agent systems (MAS)
 – Artificial Neural Networks (ANNs)
 – Reinforcement learning
 – Classification and regression

➔ In general: machine learning through statistics
What about the ‘intelligence’?

● Some key ingredients:
 – Incremental problem solving (incl. learning)
 – Real-time adaptation to changing context/environment
 – Self-analysis (success ⇔ failure at tasks)
 – Memory (short- and long-term storage)
 – Cope with large volumes of data (cf. Vol/Var/Vel/Val/Ver)

● AI’s highs and lows
 – Expectation management
 – AI Winters (’70-’90) and Summers
 – Nowadays: deep learning
Classic traffic management

- **Scope (for road traffic):**
 - The focus lies heavily on urban traffic management (i.e., traffic lights)

- **Techniques:**
 - Classic algorithmic solutions, simple heuristics, expert systems, ...
 - Ramp metering, speed harmonisation, route guidance, incident detection, ...
 - Some fancier stuff: congestion prediction (MPC), fuzzy logic, ...

- **Tools:**
 - Traffic Network Study Tool (TRANSYT)
 - Split Cycle Offset Optimisation Technique (SCOOT)
 - Urban Traffic Optimisation by Integrated Automation (UTOPIA)
 - OPAC / Rhodes / OMNIA / MOTION / SCATS / Optimax / Green Logic / MOVA / LHOVRA / COCON / ...
 - LISA+ / VERA+ / ANNA+ / INES+ / SYLVIA+
Hierarchical control

• Similar to the Open Systems Interconnection (OSI)
 – PATH framework (US) / Dolphin framework (Japan)
 – Auto21 Collaborative Driving System (CDS) framework
 – Cooperative Vehicle-Infrastructure Systems (CVIS) (EU)
 – SafeSpot (EU FP6) / PReVENT (EU) / …

• Possible layers:
 – Handheld ⇔ in-vehicle ⇔ roadside systems
 – Physical ⇔ regulation ⇔ coordination ⇔ planning ⇔ link ⇔ network

• Scope of the layers:
 – Controlling vehicle dynamics, manoeuvring, HMI, V2X, …
 – Path/network/congestion control (platoon sizes, route assignments), …
 – Global ⇔ locally distributed controllers
Organising complex systems

- Cf. Helbing’s classification:
Including ‘social’ aspects

- Shifting perspective towards the individual (informing)

- Input data for personalised services:
 - Twitter feeds / WhatsApp / Facebook traffic-related content
 - On-demand ride matching
 - Waze / Google Maps probes
 - Various floating vehicle data
 - C-ITS

- Social traffic management:
 - Leverage the power of the community
 - Accomplish large-scale behavioural changes
Current AI and traffic cases

- Traffic light control:
 - Congestion / queue length predictions

- In the automotive sector:
 - Traffic sign / context recognition, ACC, ISA, route guidance, ...

- The Theory-Practice Gap (*experimental ⇔ mainstream*)
 - Only limited advancements are exploited in the field
 - Currently AI is mostly used as a building block
 - Dealing with long platoons
 - Scalability (from a single freeway to network-wide coordination)
AI and traffic lights

- Intersection control has non-linearities and NP-hard

- Techniques:
 - Vehicles and intersections as intelligent agents
 - Self-organisation through ant-based optimisation
 - Information exchange (pheromones and evaporation)
 - ‘Antiquette’ (moving aside)
 - **Ants speed up with density**
 - Examples of decentralised control:
 - Pittsburgh: I2I(V) (+ unknown AI algorithms)
 - Toronto/Burlington (MARLIN): game theory + learning
 - Dresden: multimodal + model-based predictions

- Benefits: 25%↓ TTs, 40%↓ idling time, 20%↓ braking, ...
AI adoption and AVs

cooperative connected automated mobility (CCAM)

- AVs require a model of the world around them
 - Lots of sensor inputs (camera’s, LIDAR, wheel encoder, GPS, ...)
 - Goal: remove the (absolute) need for pre-programmed maps

- AV levels:
 - Level 3 → feasible
 - Level 4 → promised 2025 (Honda)
 - Level 5 →

- The AV revolution will enable/require traffic management on a higher and broader level (+ infrastructure modifications)
No more traffic lights?

- “Traffic lights are no solution, they cause people to speed like hell and brake like idiots”

- It’s not about structurally changing into a roundabout

- Experiments with traffic lights switched off (UK)

- But mostly operating very locally and with low volumes (+ at the cost of pedestrians’ waiting times)
AVs negotiating intersections

- Slot-based (platoons ⇔ individual vehicles)
Network-wide management

● Currently: ATMS ⇔ ATIS interactions + manual work
● Go beyond ‘multiple intersections’ (automatically!)
● Singapore:
 – Intelligent route finding algorithms
 – Minimise probability of traffic breakdown
 – Crucial element: non-linearity of congestion (10% connected)
● Traffic Management 2.0 (www.tm20.org)
 – Collaborations between road operators and service providers
 – Common interfaces, principles, and business models
Further issues

● Dealing with transition areas (e.g., road works)
 – (Early) warning systems
 – Pro-active (mandatory) control of approaching vehicles

● To what degree can we automate the processes?
 – Discovering seeds of congestion (different patterns)
 – Finetuning ramp metering, VMS, ...
 – Where to put the emphasis (i.e., what goal to optimise)?

● Various other issues:
 – Responsibilities and ethics (cf. AV debates)
 – Standards (EC ⇔ OEM ⇔ global consortia)
A note on the future of AI

● The evolution of the human race will go much quicker than that of the AI (cf. 2035-2040 time horizon)
 – Changes in mobility patterns
 – Changes in travel behaviour
 – Changes in infrastructure, vehicles, and communication

● Good ⇔ Bad AI (= human concepts)

(abstract away)
More information?

- **Transport & Mobility Leuven:**

 - http://www.tmleuven.be/

- **Data Enrichment Group:**

 - lars.akkermans@tmleuven.be

 - +32 (16) 31.77.34

 - sven.maerivoet@tmleuven.be

 - +32 (16) 31.77.33