

Management of CAVs through transition areas

Sven Maerivoet

www.transaid.eu

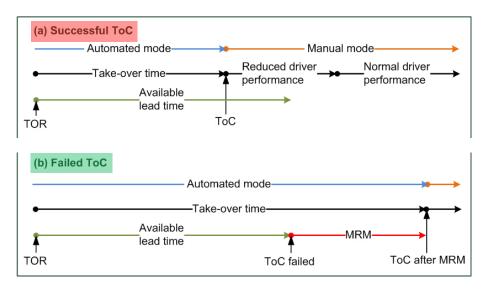
@transaid_h2020

www.linkedin.com/groups/13562830/

www.facebook.com/transaidh2020/


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

Background


Situations in which (C)AVs may struggle

Sequence of events when AD disengages

- Take-over request (TOR) issued by the car
- Transition of Control (ToC) from car to driver
- Minimum-Risk Maneuver (MRM) by the car

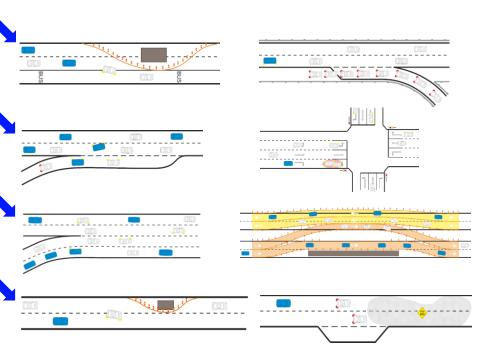
Cooperative management as a solution

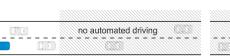
- Different SAE levels, (C)AVs, legacy vehicles, ... share the road
- Missing sensor inputs, highly complex situations, adverse weather conditions, ...
 - Current limitations of automated driving may require a change of level

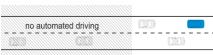
Transition Areas

- The EC's Horizon 2020 TransAID project focuses on:
 - Realistic driver/vehicle behaviour and V2X communications
 - Hierarchical traffic management procedures for transition areas
 - Field tests in The Netherlands and Germany
 - Guidelines and roadmap for stakeholders (OEMs, authorities, cities, ...)

Use Cases


Identification of transition areas


- Search for 'problems' (i.e. Transition Areas)
 - Some disturbance affecting automated vehicles in the same (small) area
 - Many automated vehicles must be affected
- Use cases are derived from:
 - Involved actors/stakeholders
 - Possibilities of measures (C-ITS messages, VMS messages, V2V display, traffic laws, road signs, ...)
 - Problems (i.e. causes)
 - ToC urgency (i.e. how much time for ToC?)
 - Contextual factors:
 - Location type (fixed / random, predictable / unpredictable)
 - Affection range and cause duration
 - Environment (static, dynamic, semi-static)
 - Vehicular factors:
 - Share of vehicles impacted by the cause per SAE level
 - Automated driving functions (AD functions, MRM implementation)
 - Possible implementation feasibility in real world prototypes
 - Expected impact with ⇔ without measures



Initial selection of services / use cases

- 1. Prevent ToC/MRM by providing vehicle path information
- 2. Prevent ToC/MRM by providing speed, headway and/or lane advice
- 3. Prevent ToC/MRM by traffic separation
- 4. Manage MRM by guidance to safe spot
- 5. Distribute ToC/MRM by scheduling ToCs

Traffic conditions, vehicle mixes, ...

	LOS A	LOS B	LOS C
Urban (50km/h) – 1500 veh/h/l	525	825	1155
Rural (80 km/h) – 1900 veh/h/l	665	1045	1463
Motorway (120 km/h) – 2100 veh/h/l	735	1155	1617
Intensity / Capacity (IC) ratio	0.35	0.55	0.77

Class Name	Class Type	Vehicle	e Capabili	ities						
	Marcal	– Le	egacy Vehic	cles						
Class 1	Manual Driving	– (C)AVs/CVs	(any level of	f driving auto	mation)				
	Dilving	– Dr	riving Auto	mation: Off		~				
		– A'	Vs/CVs equ	upped with I	Level 1/2 driv	ing automatio	n systems			
CI 1	Partial	– Dr	riving Auto	mation: On						
Class 2	Automation	– Ins	stant ToC (driver respon	nsible for mor	nitoring road e	nvironment)			
		– En	nergency b	raking in cas	e of distracte	d driving				
	G 157 1	– (C	(C)AVs equipped with Level 3 driving automation systems							
Class 3	Conditional Automation	– Dr	riving Auto	mation: On						
	Automation	– Ba	asic ToC (n	ormal duration	on)/MRM cap	bability (ego la	ine)			
		– (C)AVs equip	oped with Le	vel 4 driving	automation sy	stems			
Class 4	High	– Dr	riving Auto	mation: On						
	Automation	– Pr	oactive To	C (prolonged	duration)/M	RM capability	(right-most l	ane)		
5										
			-	Vehicle	Class 1	Class 1	Class 2	Class 2	Class 3	Class 3
				Mix		(Conn.)		(Conn.)		(Conn.)
			-	1	60%	10%	-	15%	-	10%

40%

10%

2

10%

10%

25%

40%

-

TransAID Twinning | US CAMP Workshop | 25/07/2019

TransAID

15%

25%

Class 4

Class 4 (Conn.)

5%

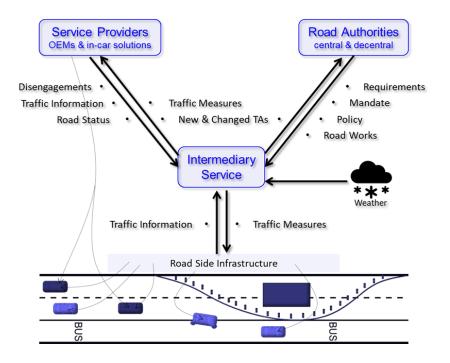
10%

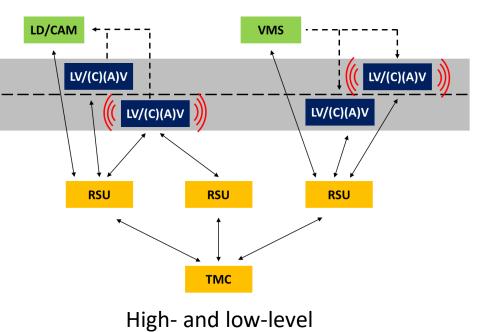
15%

Traffic Management in Transition Areas

Main observations of SotA

- General approaches
 - Coordinated network-wide traffic management
 - Using KPIs, hierarchical controls via layered architectures, TMaaS
- Cooperative systems
 - V2X / VANETs / C-ITS
- Machine learning techniques (AI)
 - Traffic light control and congestion / queue length predictions
- Conclusion
 - No (readily available) implementations of more advanced TM schemes
 - Focus on solving partial problems with specific measures



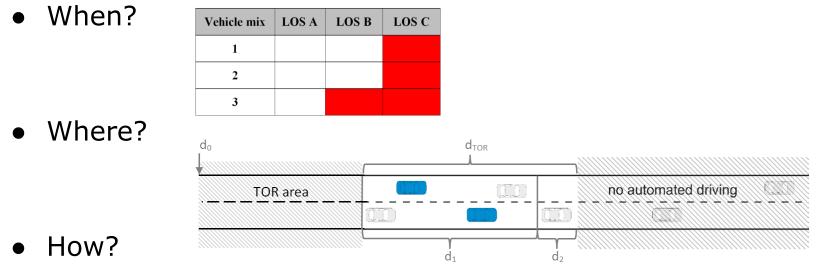

Traffic management by TransAID's services

- Solutions take the form of these actions:
 - Prevent ToC/MRM
 - Manage or support ToC/MRM
 - Distribute (in time and space) ToC/MRM
- Assess solutions based on impacts measured by **KPIs**:
 - Traffic efficiency
 - Network-wide: average speeds and throughput
 - Local: tempo-spatial diagrams
 - Traffic safety
 - Number of events with time-to-collision < 3 sec
 - Environmental impact
 - CO₂ emissions

Positioning of traffic management services

traffic management operations

Traffic management procedures


- Description of each use case
 - Functional constraints / dependencies
 - Spatial overview
- Context of the related traffic measures
 - When to apply
 - After considering baseline simulation results
 - Where to apply
 - What is the spatial extent of the transition area?
 - When does the system need to inform vehicles/drivers?
 - How to apply
 - What traffic management measures should be taken?

Example service 5 / use case 5.1

	no automated driving
Lado Lado.	

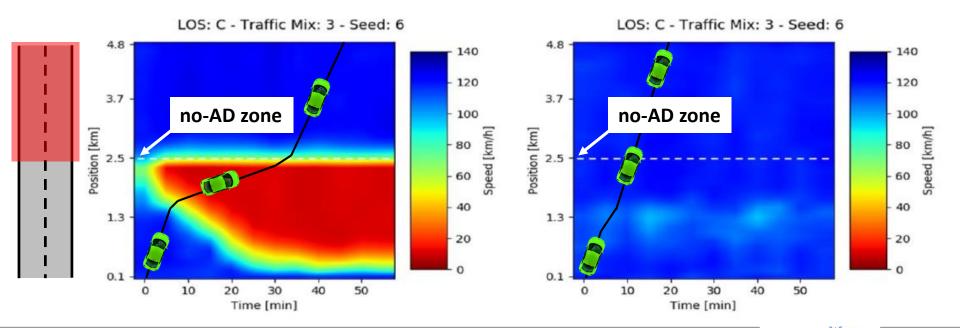
- **Distribute the TORs** within a dedicated TOR area ranging from d_{TOR} farther upstream to a distance of $d_0 > d_{TOR}$

Results

TransAID Twinning | US CAMP Workshop | 25/07/2019

16

Simulation environment



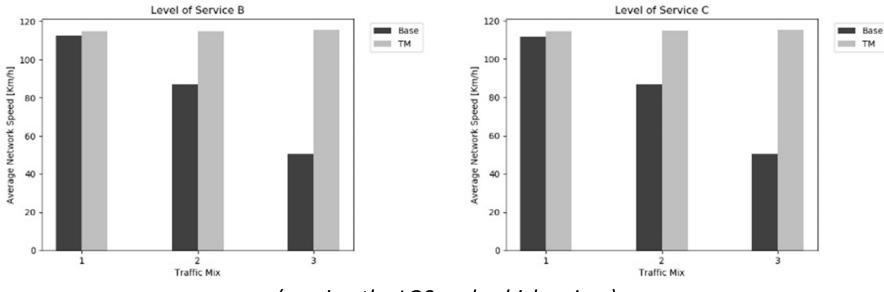
Example use case 5.1 (local speeds)

Distribute the TORs within a dedicated TOR area

Without traffic management

With traffic management

TransAID Twinning | US CAMP Workshop | 25/07/2019


TransAID

no automated driving

Example use case 5.1 (network speeds)

With traffic management

(varying the LOS and vehicle mixes)

TransAID Twinning | US CAMP Workshop | 25/07/2019

no automated driving

19

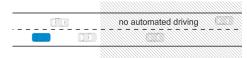
Main findings for all the use cases

- **UC1.1**: Prevent ToC/MRM by providing vehicle path information
 - Traffic efficiency and CO₂ emissions: unchanged
 - Traffic safety: significant improvement (45% to 70%)
 (larger reductions for less traffic and more AVs)

- UC2.1: Prevent ToC/MRM by providing speed, headway and/or lane advice
 - Average network speed: slight improvement
 - CO₂ emissions: slight decrease
 - Traffic safety: significant improvement (75% less safety-critical events) (especially for higher demand, LOS C)

Main findings for all the use cases

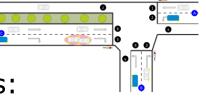
- **UC3.1**: Prevent ToC/MRM by traffic separation
 - For higher shares of AVs (>25% level 2 & 3)
 in combination with LOS B or C
 - Traffic efficiency: improvement
 - Average network speed: slight decrease
 - Traffic safety: decrease
 - → Similar performance to `no measure taken'
 - <u>Hypothesis</u>: separating traffic can outperform uncontrolled merging when cooperative manoeuvring is applied



Main findings for all the use cases

- UC4.2: Manage MRM by guidance to safe spot (urban & motorway)

- Open right lane remains unblocked
- Traffic efficiency, safety, CO₂ emissions: improvements
- Improvement diminishes in case of congestion (traffic is already moving slowly)
- **UC5.1**: Distribute ToC/MRM by scheduling ToCs
 - Greatly smoothened disturbances
 - Traffic efficiency, emissions, safety: improvement



Futher refinement of services / use cases

- Improvements/extensions:
 - Combine services
 - Increase complexity
 - Add measures
- Start on 2 new scenarios:
 - Highlighting legal aspects
 - Including an intersection

Vehicle type	Share on urban roads	Share on motorways
Passenger vehicle	87%	77%
LGV	10%	10%
HGV	3%	13%

frien frien, foren foten - foten

- Queue detection/control
- Speed harmonisation
- Speed, lane, and gap advice
- Collective perception
- Cooperative merging
- Guidance to safe spot
- Allow emergency lane
- Allow turning on through lane
- (Opposite traffic)

Let's stay in touch

- Contact:
 - julian.schindler@dlr.de (DLR, project coordinator)
 - sven.maerivoet@tmleuven.be (TML)
- Social media:
- Website: www.transaid.eu https://www.transaid.eu/deliverables/
 - / Twitter: @transaid_h2020
- LinkedIn: https://www.linkedin.com/groups/13562830/
- Facebook: https://www.facebook.com/transaidh2020/
- Subscribe to our newsletters!

