Vehicle-Infrastructure Communication for Traffic Management

Meng Lu, Dynniq Nederland B.V. The Netherlands

Twinning workshop: TransAID and US CAMP projects 25 July 2019, CAMP LLC, Farmington Hills, MI

dγnnıq

energising mobility Transaid

Track record

dynniq energising mobility

Dynniq footprint

energising mobility

UNIQUE in **Energising Mobility** Around the world market shares grow. ± 1,800 Sustainable profitability growth as Market Leader or in Strong Position Market Leader The Netherlands, with 600 Employees No. 2 and being **Dynnigs home** country, is playing a key-role while leading the world into a No. 2 promising and bright Future. 20% Market Leader SCOOT **Strong Market Position mission** UK/Ireland • 35% market share in supply and installing TLCs critical connectivity in *Belgium* • 35% market share in supply and installing signal heads Finland: Market Leader infra control and main contractor on largest ongoing motorway projects «·Ρ→ Top 3 position: > 7,500,000 parking visits handled Market Leader: Brazil each month by WPS worldwide Netherlands, Belgium, UK/Ireland Knowledge & execution partner first public direct current networks • 1,000,000 kilometres underground cable accommodated in 2016 60% of light rail traction Middle voltage/High voltage automated (sub)stations design & construct

MAVEN

Managing Automated Vehicles Enhances Network

Management regimes for automated driving in urban areas

- increase safety with collective perception (alternative: very slow driving)
- increase efficiency by exploiting possibilities of automated driving
- Monitoring, support and orchestration of movements of road users to guide vehicles at signalised intersections
- Further enhancement for ADAS and C-ITS applications

dynnid energising mobility

MAVEN use cases overview

□ I2V interactions

✓ V2I "explicit" probing + I2V speed/lane advisory + V2I feedbacks on compliance to advisories

□ Traffic controllers optimization

✓ Signal optimization, priority management, queue estimation, green wave

Platoon management

- ✓ Forming, joining, travelling in, leaving, breaking a platoon
- Inclusion of conventional traffic and VRUs
 - Detection/reaction in presence of non-coop cars & VRUs

Use cases and new data elements

Managing Automated Vehicles Enhances Network

Cluster/platoon phases	Movement		Flow optimisation	Disruptive		
initialisation	speed change advisory		priority	non-cooperation		
joining	lane change advisory		queue length estimation	emergency situations		
travelling			local routing			
leaving			network coordination			
break-up			signal optimisation			
termination			intersection negotiation			
New data element		Applicable scenario				
Number of occupants		Intersection priority management.				
Distance to following vehicle		Queue estimation. This information can improve queue model accuracy, leading to more optimal solutions for GLOSA negotiation and signal timing				
Distance to preceding vehicle						
Platooning state		Signal optimization and intersection priority				
Desired speed		Queue estimation and GLOSA negotiation				
Current lane		Lane advice, multiple lanes for a certain direction				
Route information		Queue estimation, signal optimization and GLOSA				
_		-		.*.		

Message sets

Managing Automated Vehicles Enhances Network

- Extended CAM (Cooperative Awareness Message) for automation and negotiation
- Profiled MAP/SPaT for lane specific GLOSA
- New LAM (Lane Advice Message)
- Extension to CPM (Collective Perception Message)
 - RSU detections can be included
 - possibility to link to MAP message topology for efficiency

Queue modelling - data fusion

Managing Automated Vehicles Enhances Network

- Automated vehicles have more data available
 - intended turn direction (6% better traffic efficiency)
 - desired speed
 - number of occupants (priority input)
 - compliance to advice
- Information enabled more accurate queue modelli
- Direct positive effect on several MAVEN systems
 - lane advice
 - signal optimization
 - route advice
 - speed advice

Agent-Aware Green Light Optimal Speed Advice

- Combination of vehicle-actuated control and GLOSA
- bi-directional communication
- Possible detection, e.g.
 - V2X communication
 - video capturing
 - laser scanning
 - wireless in-road detectors
 - loop detectors

Green wave

Scenario	Description						
ImFlow BL	Current adaptive traffic plan in operation						
ImFlow SA	Current adaptive traffic plan with speed advice, 23km/hr and 18km/hr between						
	intersection 101 and 102						
Static BL	Static traffic plan with no speed advice						
Static SA	Static traffic plan with speed advice, 23km/hr and 18km/hr between intersection 101 and 102						

Traffic signal control methods

Scenario	Impact(s)	Delay(s)	Stops	GLOSA(%)	MSE(s ²)	MRE(%)	PC(%)
Static	43.2	36.7	0.81	25	0	2.35	0.91
Semi-fixed	37.4	31.0	0.80	27	62	41.89	3.82
Actuated	36.3	29.6	0.84	19	182	84.67	7.62
Stabilized50	35.6	29.7	0.73	51	22	7.95	2.66
Stabilized	32.7	27.0	0.71	53	17	15.01	3.52
Adaptive	32.7	27.0	0.72	46	46	25.86	5.76
AdaptiveNG	33.7	27.0	0.83	6	47	26.90	5.54

energising mobility

Enhanced/Stabilised adaptive control

Plan stabilisation for adaptive control

energising mobility

Problem definition

 classic green wave only works with fixed time control; adaptive control can offer green wave based on high priorities for specific traffic; both approaches result in increased delay for all other traffic; traditional actuated or adaptive control is too unpredictable for a green wave or speed advice

Dynniq solution

 increase stability of adaptive control plan; give speed advice and show countdown at large distance to bicycles; limited extra delay for other traffic; high success rate for green wave

Greenwave results

Plan stabilisation for adaptive control

Speed indication at long distance

Plan stabilisation in ImFlow

For more information, see: http://maven-its.eu/ www.xcycle-h2020.eu/

Use cases (examples)

TransAID - Transition Areas for Infrastructure-Assisted Driving

Roadworks/ bus lane usage

BUS BUS

Motorway merging

no automated driving

No automation zone, TOC (Transition of **Control) spread**

Ramp metering: perception area

TransAID - Transition Areas for Infrastructure-Assisted Driving

- New ramp metering algorithm
- New C-ITS application to assist safe merging at on-ramp
- Modelling tools for simulation of motorway on-ramp situations
- Extended message sets for providing advice for traffic merging situations to cooperative and automated vehicles

Ramp metering: scenario

Ramp metering: interactions

TransAID - Transition Areas for Infrastructure-Assisted Driving

Non-cooperative vehicles

- monitor at entry detector and with the tracking camera
- turn ramp meter to green near gaps
- Cooperative vehicles
 - CAM (Cooperative Awareness Message) gives regular speed and position update
 - possibility to send lane and speed advice with app
- Automated vehicles
 - report distance to leader vehicle
 - more precise instructions

Ramp metering: algorithm and result

TransAID - Transition Areas for Infrastructure-Assisted Driving

- Restrict return to rightmost lane
 - more space for merging
 - increase model accuracy
- Speed advice
 - find first acceptable gap for vehicle when entering on-ramp
- Transition of control fallback
 - as soon as possible conclude whether merge is possible
 - more time for human driver to adjust
- Create gap with another cooperative or automated vehicle
- Turn on ramp meter

ToC Percentage

Recent results - summary

Vehicle-Infrastructure Communication for Traffic Management

- At low traffic required ToC (Transitions of Control) dropped from 50% to 4%
- Higher traffic volume also demonstrated improvement from 90% to 54%
- Baseline model clearly needed improvement for more realistic merging behaviour, especially in high traffic scenarios
- Number of stops also reduced significantly by up to 87% and a CO₂ reduction of up to 7%
- High traffic volume scenarios are expected to improve further with main road speed advice and ramp metering
- The final goal is to have no stops at all at a saturation flow that is higher than with only human drivers in the network

References

Vehicle-Infrastructure Communication for Traffic Management

- Blokpoel, R.J., Zhang, X., Koutras, D., Mintsis, E. "Motorway merging assistant for automated vehicles", Proc. European Congress on ITS, 3-6 June 2019, Eindhoven/Helmond.
- Blokpoel, R.J. et al., Deliverable D4.4 Cooperative adaptive traffic light with automated vehicles. MAVEN (Managing Automated Vehicles Enhances Network) Consortium. 2018.
- Blokpoel, R.J., Lu, M. "Signal plan stabilization to enable eco-driving", Proc. The 20th IEEE Intl. Conf. ITSC, 16-19 October 2017, Yokohama. IEEE Xplore pp.133-138.
- Lu, M. (Ed.) (2019). Cooperative Intelligent Transport Systems: Towards High-Level Automated Driving. IET, London. ISBN: 978-183953-012-8 (print) / 978-183953-013-5 (eBook) (in press)
- MAVEN Consortium. MAVEN (Managing Automated Vehicles Enhances Network), 2016. Available from: www.maven-its.eu
- TransAID Consortium. TransAID (Transition Areas for Infrastructure-Assisted Driving), 2017. Available from: www.transaid.eu
- Zhang, X. Blokpoel, R.J., Lu, M. "Adaptive green wave with speed advice for automated vehicles", Proc. European Congress on ITS, 3-6 June 2019, Eindhoven/Helmond.

Thank you for your attention.

Dr. Meng Lu

Strategic Innovation Manager

Dynniq Nederland B.V.

Basicweg 16, 3821 BR Amersfoort, The Netherlands Phone: +31 6 4505 4735

Email: meng.lu@dynniq.com

dφnnıq

energising mobility

