

or A pragmatic view of the safety benefits of CAVs?

> Joint workshop CAD & C-ITSec 9 June 2019, Paris

Pete Thomas Loughborough Pete Thomas Professor of Road and Vehicle Safety Safe and Smart Mobility Research Clust Safe and Smart Mobility Research Cluster

Key challenges for CAVs

More efficient travel

- How can we develop autonomous vehicles that work?
- How can we demonstrate they are good enough to reassure the public?
- How can we prove they will function correctly in all road conditions?
- 94% of crashes involve human error – how can we capture the expected safety benefits of CAVs?

Crash avoidance technologies

Advanced Driver Assist Systems

- Anti-lock braking
- Electronic stability control
- Autonomous Emergency braking (City, inter-urban)
- Lane keeping/change

ABS – 2% reduction in accidents

ESC – 17% reduction in accidents

AEB city – 38% reduction in relevant accidents

LDW/LKA – 30% reduction in relevant accidents

Increasing automation

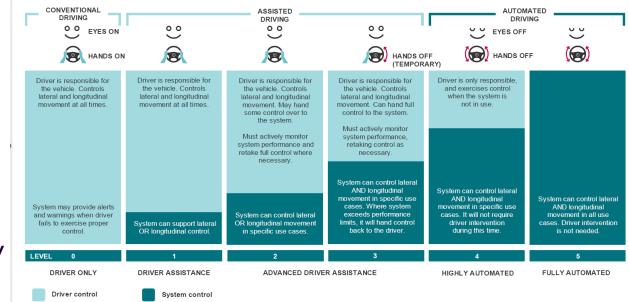
Automation

Urban mobility

- Low speed, high automation
 - Pods and shuttles
 - Cyber cars
 - Automated buses

Private vehicles

- Higher speeds, progressively higher automation
 - Based on existing technologies (ABS, ESC, LDW, LKA, FCW, ACC etc.)
 - Movement to traffic jam assist, autopark, highway chauffeur, highway autopilot


What are the differences?

ADAS

- Examples ESC, AEB, LDW, LKA...
- They operate in tricky situations when the human cannot
- Rapid development of technologies
 and entry to market

Automation

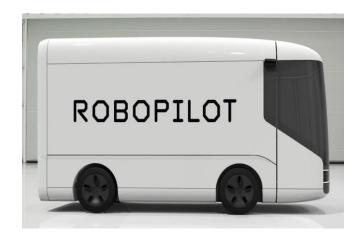
- Replaces human for normal driving tasks
- ERTRAC roadmap highlights highway and parking technologies
- Defined for a specific environment
- SAE Levels 0 5

Levels of assistance and automation

Trials and normal operational use

- ADAS widespread in the vehicle fleet
- CAVs are in use on the public road in trials with regulatory exemptions and safety marshal
- CAVs are not permitted in service in most locations

Loughborough


Field trials and evaluations

Evaluation

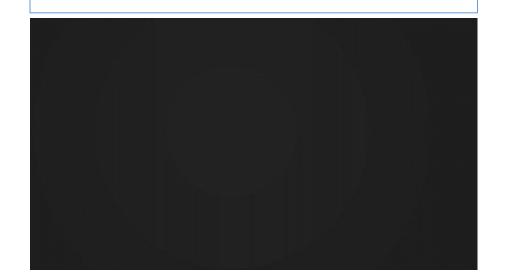
- System functionality under natural conditions
- Human factors and road user behaviour
- Impact on safety, environment and efficiency
- Events investigations

Demonstration

- Show CAV operation to public and stakeholders
- Business models
- Reassure public over safety and efficiency

How do we prove CAVs operate correctly in all situations?

• Physical testing


- Off road
- On road
- 10⁵ km +

Simulation

- Challenging
- How to model environment, sensors, control systems?

Safety and Virtual Testing @CapriMobility CapriMobility.com

What could possibly go wrong?

Home UK World Politics US Ocean Rescue Tech Business Entertainment Offbeat Weather

Uber halts driverless car tests after vehicle rolls over in

Self-driving bus involved in crash less than two hours after Las Vegas launch

A truck driver is blamed for the accident, which passengers say could have been avoided if the autonomous vehicle had only reversed

Ø Self-driving bus company says vehicle safe following crash - video

sky NEWS

f Share

Q Watch Live

NEWS Home UK World Business Politics Tech Science Health Family & Educ

BBC @ Pete and magg... A News Sport Weather

Technology

③ 24 January 2018

Tesla and GM self-drive cars involved in road collisions

f 😏 😒 🥰 share

"A Tesla Crash, but Not Just a Tesla Crash": NTSB Issues Final Report and Comments on Fatal Tesla Autopilot Crash

OCTOBER 3, 2017 AT 11:48 AM BY PETE BIGELOW | PHOTOGRAPHY BY NTSB/FLORIDA HIGHWAY PATROL/AP NATIONAL TRANSPORTATION SAFETY BOARD, TESLA MOTORS

Arizona smash An investigation is underway after an autonomous SUV is involved in a three-vehicle crash during testing.

We use mobiles to give up if the best evideriance. If you do nothing well assume that it's ob

ODENEWS VIDEO LIVE SHOWS III O

Tesla's Autopilot woes continue with Laguna Beach police car crash

By JEFFREY COOK and ERIN DOOLEY Jun 2, 2018, 8:36 AM ET

Regulation – how is it developed?

- EU Brussels EC Whole Vehicle Type Approval
- Global Geneva WP 29 Global Technical Regulations
 - Safety and security of vehicle automation and connectivity:
 - Framework
 - Functional requirements
 - New assessments and test methods
 - Cyber security (and software updates)
 - Data Storage System for Automated Driving (currently)
 - ADAS:
 - Remote control manoeuvring
 - Automatically commanded steering systems
 - Dynamics (Steering, Braking etc.):
 - Advance Emergency Braking Systems
 - Anti-lock Braking System for motorcycles
 - Electronic Stability Control

World Forum for Harmonization of Vehicle Regulations (WP.29)

Loughborough

Working Party on Automated/Autonomous and Connected Vehicles (GRVA)

Why is this important?

- Automated systems cannot be used in production vehicles unless they comply with regs
- Regulation primarily addresses safety
- Exemptions are possible but
 - Lack of relevant regulation is a barrier to deployment and sales

Current regulatory concepts

Audit	Virtual Testing	Tracks Testing	Real World Testing	In Service
Function Safety	Road/scenario DB	Specific scenarios	Safety driver	Significant increase
Strategy. FMEAs	Driver models Vehicle models	testing	controlled use, wide verity of scenarios	in miles driven. Limited or no driver
		Testing	with diversity of	interventions
Design,	Testing	Knowns	conditions	
levelopment,	Knowns	Objects		Measurements
esting,	Objects	Movement	Testing	Perception
nanufacturing	 Movement 	Real vehicle	Few external	consistency
processes	Vehicle drives	motion	knowns	Planning accuracy
	as per model	Perception edge	Disengagements	Driving accuracy
	Perception limited	case possible	Testers notes	Near missesAccident reports
	Measurements	Measurements	Measurements	
	Against test	Against test	Perception	
	criteria of knowns	criteria of knowns	consistency	
		Perception	Planning accuracy	
		consistency	Driving accuracy	
Testing	Testing	Testing	Testing	Deploy
Refine	Refine	Refine	Refine	Refine

Multi Tier Measurement

What is safety?

- Management of the introduction of new technologies to avoid the introduction of new risks
- Use of new technologies to reduce existing road risks
 ->reducing casualties below existing numbers

- How do we decide on a reference safety level?
 - same risks than current vehicles?

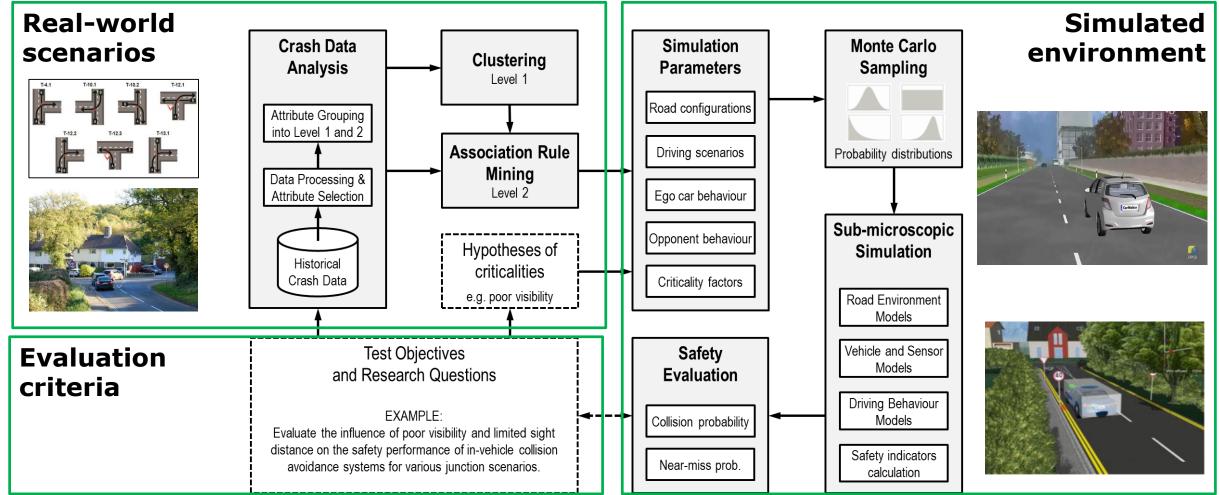
Loughborough

University

- as safe as a human?
- no crashes under any circumstances?

What are the limitations of new systems?

• How do they compare to human drivers?


One death	277 million km	173 million miles
One serious injury	19 million km	12 million miles
One minor injury	1.6 million km	1 million miles

- Human drivers are very safe and resilient how do automatic systems compare?
- How do we compare risks?

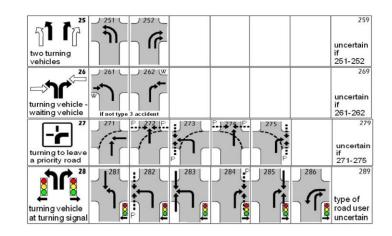
Virtual validation methodology

Goal: Enable virtual testing of automated driving systems in representative

scenarios and environments

Validation challenges

- Public wants assurance
 automated vehicles are safe
-in every driving situation
-not 99% or 99.9999%
- Many, many permutations
 - Road characteristics
 - Environmental characteristics
 - Vehicle characteristics
 - Traffic characteristics
 - Interaction characteristics


Assisted and Automated Driving Behavioural Competency Framework

Motorised Vehicles

- Perform Low and High Speed Merge
- Detect and respond to encroaching oncoming vehicles
- Perform car following and stop and go
- Detect and respond to stopping or stopped vehicle
- Detect and respond to lane changes
- Accommodate Emergency Vehicle priority

Other Road Users

- Detect and respond to cyclists in and out of cycle ways
- Detect and respond to cyclist on roads including those inhibiting passing
- Detect and respond to pedestrians on pedestrian crossings zebra/pelican
- Detect and respond to pedestrians crossing outside of pedestrian zones
- Provide safe distance and navigation of pedestrians and cyclists at side of road

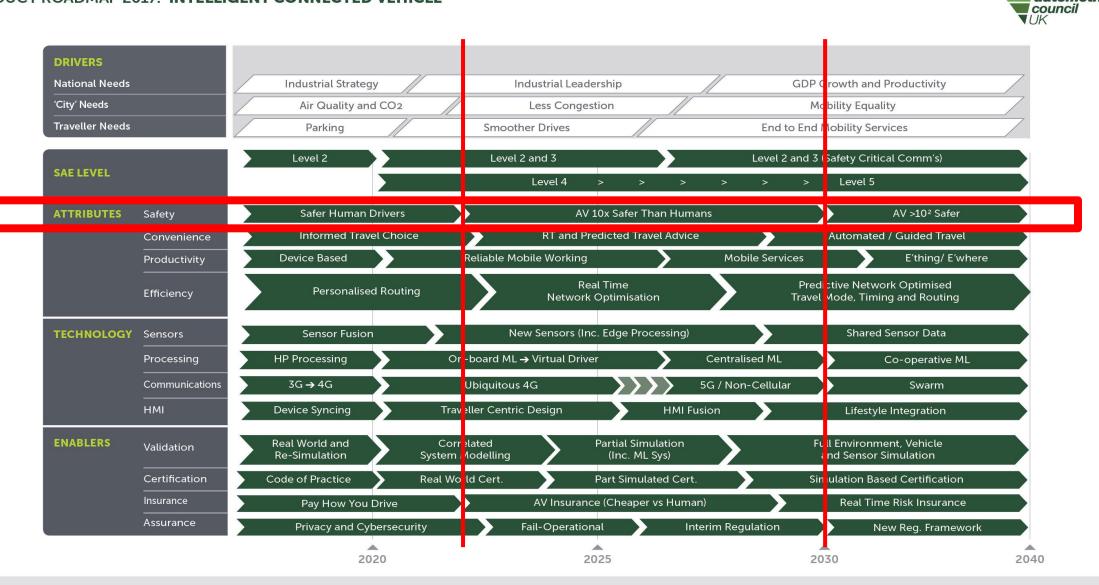
Variability of real-world conditions

Urban

Highway

Weather

Lighting



Every possible real world scenario?

PRODUCT ROADMAP 2017: INTELLIGENT CONNECTED VEHICLE

automotive

Introduction A Mainstream A Phasing out

Potential safety benefits of CAVs

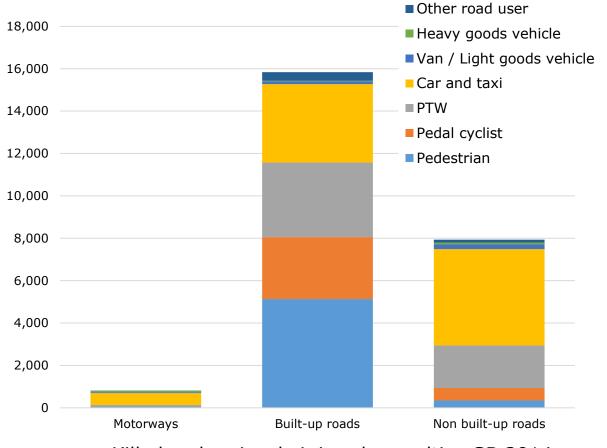
Perfect CAVs mean that

 Crashes involving CAVs will be avoided

But

- Imperfect CAVs
- Mixed fleet
- Crashes not involving cars
- Communication with pedestrians, cyclists etc.

Currently


- CAVs can sometimes operate in simple scenarios
- We have little knowledge about the impact of CAVs on traffic and safety

Loughborough

 We have little more knowledge about ADAS and safety

What are the road safety challenges?

- 1. Urban safety technologies to prevent pedestrian, car occupant, PTW and cyclist crashes
- 2. Rural roads car occupants and PTW riders
- 3. Improving highway safety, while valuable, does not address the most common groups of casualties.

Killed and seriously injured casualties GB 2014

The UK real-world CAV test facility

- New £17m CAV test bed located in London
- Test routes on Queen Elizabeth Olympic Park and Greenwich
- Instrumented and connected roads for CAV and Intelligent Mobility applications
- Partners Loughborough University, TRL, Cisco, Cubic, TfL, LLDC, DG Cities

Conclusions

- To support the deployment of automated vehicles a new regulatory pathway is needed
- The public expects safety levels to be much higher than that of human drivers
- Significant safety benefits in the near future will come from systems targeting vulnerable road users in urban areas

Pete Thomas

Professor of Road and Vehicle Safety

p.d.thomas@lboro.ac.uk

Safe and Smart Mobility Research Cluster Loughborough University Leicestershire LE11 3TU United Kingdom Tel: +44 (0)1509 226931