

Simulation and field testing

Julian Schindler

www.transaid.eu
@transaid_h2020
www.linkedin.com/groups/13562830/
www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

Simulation

SUMO

Starting with simple simulations w/o communication

→ More details required
 → What is the effect of communication?

Detailed simulations in built on top of the iTetris framework with communication simulation (lightcomm/ns-3)

Simulation Environment – Components

Simulation Environment – Data Exchange

Simulation Environment – Main Findings

- Adding V2X communication to the simulation can significantly impact results, depending on sensitivity of TM algorithm
 - e.g., ToC scheduling depends on robust communication

- Computational overhead of comm. simulation
 - Trade-off computation time vs. realism

Informing surrounding unequipped vehicles

- Infrastructure support also for unequipped vehicles
- To explain vehicle issues and related infrastructure measures
 - e.g. by VMS:

- VR study with 10 participants
- Different dHMIs and eHMIs tested
- External lights on CAVs enhance understanding of behaviour

Real world test equipment

Feasibility Assessment

Assessment of the correct functionality of

- Infrastructure
 - Sensors
 - Algorithms
 - Message signs
- Vehicle
 - Sensors
 - Automation behaviour
- Communication

In total: ~50 scenarios

Scenario 2.1: Merging Assistant

- Assistant application for CVs and CAVs.
- Uses cooperative perception and V2X communication to augment the CVs and CAVs sensing capability in the high-speed merging area.
 - Detection of highway traffic with loops and camera
- Provides real-time speed advice to on-ramp vehicle to assist a smooth merge and prevent ToC.
- Public road testing on A13 in the Netherlands

Scenario 2.1: Merging Assistant Visualization

Scenario 2.1: Merging Assistant CAV testing

Several extensions for CAVs:

- Infrastructure gives early speed advice to onramp vehicle
- and early ToC advice in case of impossible merging
- V2V cooperation when CAVs meet:
 - If possible, highway vehicle changes lane
 - If not, highway vehicle opens gap

Service 4.1-5: I2V assisted ToC

- Integration of TransAID V2X protocols in Hyundai cars
- Validation of Service 4.1-5: distribution of ToC before a no-AD zone and safe spot suggestion
- Comparison between "TransAID" and "baseline" approach

TransAID approach (MCM-based):

RSU uses MCM to trigger **different ToC points** at different cars with **individual** safe spot advices

- less risk of cars having ToC at the same point (++)
- cars are "guided" to safe spots in case of MRM, no risk to stop on ego-lane (++)

Baseline approach (DENM-based):

RSU uses DENM to trigger ToC at relevant distance **without** advising safe spot in case of MRM

- multiple cars can have erratic behavior at same point due to ToC (--)
- cars have to "search" a safe spot with own sensors in case of MRM and might stop on ego lane (--)

Service 4.1-5: I2V assisted ToC

Empirical results (1)

• Safe MRM:

	DENM1	DENM2	DENM3
Stopping when no safe spot is found in	0m	50m	until no-AD zone

Empirical Results (2)

ToC point

• ToC Distribution: prob. to trigger ToC @ distance x from baseline

Turne							
_1	r	a	n	S	P		υ
					-	_	

	MCM1	MCM2	MCM3	MCM4
Strategy	Min. distance driven in MRM		Max. spatial distribution of safe spots	
Slow down	instantly	@ spot	instantly	@ spot

More assessment impressions

Service 1: Prevent ToC/MRM by providing vehicle path information

Feasibility Assessment Results

- Implementations are working
 - Infrastructure can detect vehicles and generate messages with 10 Hz
 - All messages are sent and received as desired
 - Vehicle automation is able to process advice and use it in planning
- Effects
 - CAV behaviour gets much smoother when infrastructure advice is used
 - Different behaviour of CAVs, when it knows more, and knows it earlier, e.g.
 - When entering the highway \rightarrow ramp not used
 - Early speed reduction at traffic lights
- Some parts need more research
 - Exact maneuvering requires high sending frequencies. Esp. CPM and MCM are large messages, consuming the bandwidth largely. Scalability is important.
 - V2V-MCM can result in behaviour jittering
 - Definition of best behaviour when driving to dedicated safe spot.
- Tests are ongoing (COVID-19 related)

Possible demonstration

FORUM ISTS2020

Forum on Integrated and Sustainable Transportation System 3 -5 November 2020 // Delft - The Netherlands

Questions? Let's stay in touch!

Contact: sven.maerivoet@tmleuven.be julian.schindler@dlr.de (Project Coordinator)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390