

Vehicle automation modelling and simulation

Evangelos Mintsis

www.transaid.eu
@transaid_h2020

www.linkedin.com/groups/13562830/

www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

Vehicle/Driver Models for (C)AVs

• Car-following

- Adaptive Cruise Control (ACC)
- Cooperative Adaptive Cruise Control (CACC)

Lane changing

- ➢ Parametrized SUMO lane change model → Automated Vehicles (AVs)

• **Control Transitions (automated** ↔ manual)

- ➤ Transition of Control (ToC) process → Downward & Upwards transitions
- > Minimum Risk Maneuver \rightarrow Unsuccessful ToCs

Car-following

- (Cooperative) Adaptive Cruise Control California PATH
- i. **Speed control mode**: is designed to maintain the desired driver speed,
- **ii. Gap control mode**: aims to maintain a constant space/time gap between the controlled vehicle and its predecessor,
- iii. Gap-closing control mode: enables the smooth transition from speed control mode to gap control mode,
- iv. Collision avoidance mode: prevents rear-end collisions.

Lane Changing

- Parametrized SUMO Lane Change Model
 - i. Variance based sensitivity analysis \rightarrow Influential lane change calibration parameters
 - ii. SUMO lane change output vs HMETC lane change data \rightarrow Reconciliation

Speed Range [0, 100] (km/h)						
Parameter	Leader gap (ego lane)		Leader gap (target lane)		Follower gap (target lane)	
Sensitivity Index	S _i [%]	<i>ST_i</i> [%]	S _i [%]	<i>ST</i> _i [%]	S _i [%]	<i>ST_i</i> [%]
lcStrategic	0.39	0.62	0.74	2.62	1.14	0.47
lcKeepRight	1.08	0.83	3.32	7.57	1.13	2.26
lcSpeedGain	0.90	8.12	10.92	22.26	0.77	1.37
lcAssertive	59.15	77.03	61.26	80.17	91.40	95.56

Cooperative Manoeuvring

Cooperative Lane Changing

- Decentralized approach
- ➤ Cooperation between ego CAV & target follower CAV → Gap Creation
- \blacktriangleright openGap TraCI function \rightarrow

https://sumo.dlr.de/wiki/TraCI/Change Vehicle State#open gap .280x16.29

Parameter Name	Value	Description
newTimeHeadway	4 s	The vehicle's desired time headway will be changed to the given new value with use of the given change rate.
newSpaceHeadway	15 s	The vehicle is commanded to keep the increased headway for the given duration once its target value is attained.
duration	5 s	The time period in which the time and space headways will be changed to the given new values.
changeRate	0.5	The rate at which the new headways' effectiveness is gradually increased.
maxDecel	1 m/s^2	The maximal value for the deceleration employed to establish the desired new headways.
referenceVehicleID	ID#	The ID of the reference vehicle.

Open Gap Function

Control Transitions

Transition of Control

Minimum Risk Maneuver

- i. **MRM** \rightarrow Current lane
- ii. MRM → Right-most lane (including lane change maneuver)
- iii. MRM \rightarrow Constant deceleration rate (3.0 m/s²)

Triggering of Take-over Requests (TORs)

- Fixed TOR location \rightarrow Specified through TraCI function
- **Dynamic TOR triggering** → Induced by static blockage (e.g. road works etc.)
 - > CAV merging to open lane blocked by neighboring traffic
 - \blacktriangleright dynamicToCThreshold * currentSpeed + MRM_{dist} < distanceToBlockage
 - Situation-specific available lead time
- ToC Preparation Phase \rightarrow Open gap TraCI function
 - > Establish safe gap to leading vehicle prior to downward control transition
- Lane Change Abstinence during:
 - ToC Preparation Phase
 - Recovery Phase

Simulated Use Cases

Mixed Traffic Simulations

Vehicle Types

Vehicle type	Share on urban roads	Share on motorways		
Passenger vehicle	87%	77%		
LGV	10%	10%		
HGV	3%	13%		

Automation/Communication Penetration

Vehicle Mix	Class 1	Class 1 (Conn.)	Class 2	Class 2 (Conn.)	Class 3	Class 3 (Conn.)	Class 4	Class 4 (Conn.)
1	60%	10%	-	15%	-	15%	-	-
2	40%	10%	-	25%	-	25%	-	-
3	10%	10%	-	40%	-	40%	-	-

Traffic Demand Levels

Facilitas Terra	Consister (such that)	Level of Service (LOS)			
Facility Type	Capacity (veh/h/l)	В	С	D	
Urban (50km/h)	1500 veh/h/l	825	1155	1386	
Rural (80 km/h)	1900 veh/h/l	1045	1463	1756	
Motorway (120 km/h)	2100 veh/h/l	1155	1617	1940	
Intensity / Capacity (IC) ratio	0,55	0,77	0.92		

Parametrization Schemes

	ACC	SL2015	ToC/MRM	ToC/MRM	ToC/MRM	
Parametrization Scheme	Desired time headway	Desired longitudinal gaps	Driver response time	Post ToC driver performance	MRM likelihood	
Pessimistic Safety (PS)	Smal1	Short	Long	Low	High	
Pessimistic Efficiency (PE)	Large	Large	Long	Low	High	
Moderate Safety and Efficiency (MSE)	Moderate	Moderate	Moderate	Moderate	Moderate	
Optimistic Efficiency (OE)	Smal1	Short	Short	High	Low	
Optimistic Safety (OS)	Large	Large	Short	High	Low	

Results

• Work Zone Use Case → Motorway Network

> Impacts of vehicle disengagements on Traffic Efficiency

Results

• Impacts of vehicle disengagements on Conflict Risk → Critical Events: Time-to-Collision ≤ 1.5 sec

Uncongested conditions

Congested conditions

Findings

- Transitions of Control (ToCs) \rightarrow traffic flow disruption for increased carfollowing headways in the ToC preparation phase
 - disruption escalates in case of CACC driving, increased share of CAVs in the fleet mix, occurrence of multiple ToCs within narrow temporal window and spatial domain
- Unmanaged Minimum Risk Manoeuvers (MRMs) → increased traffic breakdown probability
 - magnitude of the disruption is affected by the driver response time
- **Conservative CAV lane changing** → higher traffic heterogeneity
 - throughput reduction for increased share of CAVs in the fleet mix
 - conflict risk increase in the proximity of lane drop locations

Considerations

- Transitions of Control (ToCs) → unavailability and scarcity of field data
 - erratic vehicle behavior during the post-ToC phase explicitly concerns longitudinal motion
 - unexpectedness of ToCs/MRMs for manually driven vehicles is not captured comprehensively
- **Mixed traffic** \rightarrow ambiguous interactions of manually driven vehicles with CAVs
 - Iow penetration rate of CAVs in the real-world fleet mix
- **Conservative CAV lane changing** → single prototype AV
 - > highly automated driving might enable human-like (less conservative) lane changing
- Simulation Experiments \rightarrow abstract simulation networks and hypothetical demand scenarios

Research Outlook

Accuracy of CAV-human interactions

- bow to quantify behavioral processes during vehicle disenses and a ?
- Vehicle dynamics and characteristics
 - what are the actual sensing, perception planning, many euvring capabilities of highly automated vehicles?
- Inter-vehicle Pateraccions
 - how are CAVs going to meral t with manually driven vehicles?
 - how are CAVs equipped with different automation and communication capabilities are going to interact with each other?

Integration of Models in SUMO

- (Cooperative) Adaptive Cruise Control Model → SUMO Source Code
 - <u>https://sumo.dlr.de/wiki/Car-Following-Models/ACC</u> (Sumo Wiki Page)
 - <SUMO_HOME>/src/microsim/cfmodels/MSCFModel_ACC.cpp
 - <u>https://sumo.dlr.de/wiki/Car-Following-Models/CACC</u> (Sumo Wiki Page)
 - <SUMO_HOME>/src/microsim/cfmodels/MSCFModel_CACC.cpp
- **Parametrized Lane Change Model** \rightarrow Adaptation of existing model params
- **Cooperative lane changing** → Open gap TraCI function
 - https://sumo.dlr.de/wiki/TraCI/Change Vehicle State#open gap .280x16.29
- ToC/MRM Model → ToC Device (SUMO Source Code + TraCI Functions)
 - <u>https://sumo.dlr.de/wiki/ToC_Device</u> (Sumo Wiki Page)

Publications

- Deliverable D3.1 → Modelling, simulation and assessment of vehicle automations and automated vehicles' driver behaviour in mixed traffic
- Deliverable D3.2 → Cooperative manoeuvring in the presence of hierarchical traffic management
- Porfyri, K. N., Mintsis, E., & Mitsakis, E. (2018). <u>Assessment of ACC and CACC systems</u> <u>using SUMO</u>. EPiC Series in Engineering, 2, 82-93. <u>https://doi.org/10.29007/r343</u>
- Lücken, L., Mintsis, E., Porfyri, K. N., Alms, R., Flötteröd, Y.-P., & Koutras, D. (2019). <u>From</u> <u>Automated to Manual-Modeling Control Transitions with SUMO</u>. EPiC Series in Computing, 62, 124-144. <u>https://doi.org/10.29007/sfgk</u>
- Mintsis, E., Lücken, L., Karagounis, V., Porfyri, K. N., Rondinone, M., Correa, A., Schindler, J., & Mitsakis, E. (2020). *Joint Deployment of Infrastructure Assisted Traffic Management and Cooperative Driving around Work Zones*. IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). (*accepted*)

Questions? Let's stay in touch!

Contact: vmintsis@certh.gr julian.schindler@dlr.de (Project Coordinator)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

TransAID Final Event | 01 July 2020